10,443 research outputs found

    GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction

    Full text link
    In voxel-based neuroimage analysis, lesion features have been the main focus in disease prediction due to their interpretability with respect to the related diseases. However, we observe that there exists another type of features introduced during the preprocessing steps and we call them "\textbf{Procedural Bias}". Besides, such bias can be leveraged to improve classification accuracy. Nevertheless, most existing models suffer from either under-fit without considering procedural bias or poor interpretability without differentiating such bias from lesion ones. In this paper, a novel dual-task algorithm namely \emph{GSplit LBI} is proposed to resolve this problem. By introducing an augmented variable enforced to be structural sparsity with a variable splitting term, the estimators for prediction and selecting lesion features can be optimized separately and mutually monitored by each other following an iterative scheme. Empirical experiments have been evaluated on the Alzheimer's Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of proposed model is verified by improved stability of selected lesion features and better classification results.Comment: Conditional Accepted by Miccai,201

    Glucocorticoid with cyclophosphamide for paraquat-induced lung fibrosis.

    Get PDF
    Paraquat is an effective and widely used herbicide but is also a lethal poison. In many developing countries paraquat is widely available and inexpensive, making poisoning prevention difficult. However most of the people who become poisoned from paraquat have taken it as a means of suicide.Standard treatment for paraquat poisoning both prevents further absorption and reduces the load of paraquat in the blood through haemoperfusion or haemodialysis. The effectiveness of standard treatments is extremely limited.The immune system plays an important role in exacerbating paraquat-induced lung fibrosis. Immunosuppressive treatment using glucocorticoid and cyclophosphamide in combination is being developed and studied. To assess the effects of glucocorticoid with cyclophosphamide on mortality in patients with paraquat-induced lung fibrosis. The most recent search was run on the 15th April 2014. We searched the Cochrane Injuries Group's Specialised Register, The Cochrane Library, Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), Embase Classic+Embase (Ovid), ISI WOS (SCI-EXPANDED, SSCI, CPCI-S & CPSI-SSH), trials registries, Chinese databases (, , ) and reference lists. RCTs were included in this review. All patients were to receive standard care, plus the intervention or control. The intervention was glucocorticoid with cyclophosphamide in combination versus a control of a placebo, standard care alone or any other therapy in addition to standard care. The mortality risk ratio (RR) and 95% confidence interval (CI) was calculated for each study on an intention-to-treat basis. Data for all-cause mortality at final follow-up were summarised in a meta-analysis using a fixed-effect model. This systematic review includes three trials with a combined total of 164 participants who had moderate to severe paraquat poisoning. Patients who received glucocorticoid with cyclophosphamide in addition to standard care had a lower risk of death at final follow-up than those receiving standard care only (RR 0.72; 95% CI 0.59 to 0.89). Based on the findings of three small RCTs of moderate to severely poisoned patients, glucocorticoid with cyclophosphamide in addition to standard care may be a beneficial treatment for patients with paraquat-induced lung fibrosis. To enable further study of the effects of glucocorticoid with cyclophosphamide for patients with moderate to severe paraquat poisoning, hospitals may provide this treatment as part of an RCT with allocation concealment

    Formalin injection causes a coordinated spinal cord CO/NO-cGMP signaling system response

    Get PDF
    BACKGROUND: The CO/NO-cGMP signalling system participates in the regulation of many physiological processes. The roles this system plays in spinal cord nociceptive signalling are particularly important. While individual components have been examined in isolation, little study has been dedicated to understanding the regulation and functioning of the system as a whole. RESULTS: In these studies we examined the time course of expression of 13 genes coding for components of this system including isoforms of the heme oxygenase (HO), nitric oxide synthase (NOS), soluble guanylate cyclase (sGC), cGMP dependent protein kinase (PKG) and phosphodiesterase (PDE) enzyme systems. Of the 13 genes studied, 11 had spinal cord mRNA levels elevated at one or more time points up to 48 hours after hindpaw formalin injection. Of the 11 with elevated mRNA, 8 had elevated protein levels 48 hours after formalin injection when mechanical allodynia was maximal. No component had an increased protein level which did not have an increased mRNA level at one or more time points. Injection of morphine 10 mg/kg prior to formalin completely abolished the acute nociceptive behaviours, but did not alter the degree of sensitivity which developed in the formalin treated hind paws during the subsequent 48 hours. Morphine treatment did, however, eliminate formalin induced increases in enzyme protein levels. CONCLUSION: Our results indicate that the expression of the components of the CO/NO-cGMP signalling system seems to be coordinated in such a way that a generalized multi-level enhancement rather than a tightly limited step specific response occurs with noxious stimulation. Furthermore, the analgesic morphine administered prior to noxious stimulation can prevent long-term changes in gene expression though not necessarily nociceptive sensitisation

    Overexpression Of Chd1l Is Positively Associated With Metastasis Of Lung Adenocarcinoma And Predicts Patients Poor Survival

    Get PDF
    CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like gene) has been demonstrated as an oncogene in hepatocellular carcinoma (HCC), however, the role of CHD1L in non-small-cell lung cancer (NSCLC) tumorigenesis hasn't been elucidated. In this study, the expression and amplification status of CHD1L were examined by immunohistochemistry and fluorescence in situ hybridization respectively in 248 surgically resected NSCLCs. The associations between CHD1L expression and clinicopathologic features and the prognostic value of CHD1L were analyzed. Overexpression and amplification of CHD1L was found in 42.1% and 17.7% of NSCLCs, respectively. The frequency of CHD1L overexpression (53.2% vs. 28.1%, P = 0.002) and amplification (25.2% vs. 8.2%, P = 0.020) in adenocarcinoma (ADC), was much higher than that in squamous cell carcinoma (SCC). CHD1L overexpression was associated closely with ascending pN status (P < 0.001), advanced clinical stage (P = 0.001) and tumor distant metastasis (P = 0.001) in ADCs, but not in SCCs. For the whole cohort and ADC patients, univariate survival analysis demonstrated a significant association of CHD1L overexpression with shortened survival; and in multivariate analysis, CHD1L overexpression was evaluated as a independent predictor for overall survival and distant metastasis free survival. These results suggested that overexpression of CHD1L is positively associated with tumor metastasis of lung ADC, and might serve as a novel prognostic biomarker and potential therapeutic target for lung ADC patients.published_or_final_versio

    Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy.

    Get PDF
    BACKGROUND: Sarcomere protein mutations in hypertrophic cardiomyopathy induce subtle cardiac structural changes before the development of left ventricular hypertrophy (LVH). We have proposed that myocardial crypts are part of this phenotype and independently associated with the presence of sarcomere gene mutations. We tested this hypothesis in genetic hypertrophic cardiomyopathy pre-LVH (genotype positive, LVH negative [G+LVH-]). METHODS AND RESULTS: A multicenter case-control study investigated crypts and 22 other cardiovascular magnetic resonance parameters in subclinical hypertrophic cardiomyopathy to determine their strength of association with sarcomere gene mutation carriage. The G+LVH- sample (n=73) was 29 ± 13 years old and 51% were men. Crypts were related to the presence of sarcomere mutations (for ≥1 crypt, β=2.5; 95% confidence interval [CI], 0.5-4.4; P=0.014 and for ≥2 crypts, β=3.0; 95% CI, 0.8-7.9; P=0.004). In combination with 3 other parameters: anterior mitral valve leaflet elongation (β=2.1; 95% CI, 1.7-3.1; P<0.001), abnormal LV apical trabeculae (β=1.6; 95% CI, 0.8-2.5; P<0.001), and smaller LV end-systolic volumes (β=1.4; 95% CI, 0.5-2.3; P=0.001), multiple crypts indicated the presence of sarcomere gene mutations with 80% accuracy and an area under the curve of 0.85 (95% CI, 0.8-0.9). In this G+LVH- population, cardiac myosin-binding protein C mutation carriers had twice the prevalence of crypts when compared with the other combined mutations (47 versus 23%; odds ratio, 2.9; 95% CI, 1.1-7.9; P=0.045). CONCLUSIONS: The subclinical hypertrophic cardiomyopathy phenotype measured by cardiovascular magnetic resonance in a multicenter environment and consisting of crypts (particularly multiple), anterior mitral valve leaflet elongation, abnormal trabeculae, and smaller LV systolic cavity is indicative of the presence of sarcomere gene mutations and highlights the need for further study

    Priorities to promote participant engagement in the Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network

    Get PDF
    BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network\u27s research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network\u27s research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement

    Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI

    Get PDF
    Purpose: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. Methods: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz-oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. Results: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. Conclusion: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI

    Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding

    Get PDF
    Background Environmental DNA (eDNA) metabarcoding is a promising tool for rapid, non‐invasive biodiversity monitoring. Aims In this study, eDNA metabarcoding is applied to explore the spatial and temporal distribution of fish communities in two aquaculture ponds and to evaluate the detection sensitivity of this tool for low‐density species alongside highly abundant species. Materials & Methods This study was carried out at two artificially stocked ponds with a high fish density following the introduction and removal of two rare fish species. Results & Discussion When two rare species were introduced and kept at a fixed location in the ponds, eDNA concentration (i.e., proportional read counts abundance) of the introduced species typically peaked after two days. The increase in eDNA concentration of the introduced fish after 43 hrs may have been caused by increased eDNA shedding rates as a result of fish being stressed by handling, as observed in other studies. Thereafter, it gradually declined and stabilised after six days. These findings are supported by the highest community dissimilarity of different sampling positions being observed on the second day after introduction, which then gradually decreased over time. On the sixth day, there was no longer a significant difference in community dissimilarity between sampling days. The introduced species were no longer detected at any sampling positions on 48 hrs after removal from the ponds. eDNA is found to decay faster in the field than in controlled conditions, which can be attributed to the complex effects of environmental conditions on eDNA persistence or resulting in the vertical transport of intracellular DNA and the extracellular DNA absorbed by particles in the sediment. The eDNA signal and detection probability of the introduced species were strongest near the keepnets, resulting in the highest community variance of different sampling events at this position. Thereafter, the eDNA signal significantly decreased with increasing distance, although the signal increased slightly again at 85 m position away from the keepnets. Conclusions Collectively, these findings reveal that eDNA distribution in lentic ecosystems is highly localised in space and time, which adds to the growing weight of evidence that eDNA signal provides a good approximation of the presence and distribution of species in ponds. Moreover, eDNA metabarcoding is a powerful tool for detection of rare species alongside more abundant species due to the use of generic PCR primers, and can enable monitoring of spatial and temporal community variance
    corecore