101 research outputs found
Efficiency of Ontario primary care physicians across payment models : a stochastic frontier analysis
Objective
The study examines the relationship between the primary care model that a physician belongs to and the efficiency of the primary care physician in Ontario, Canada.
Methods
Survey data were collected from 183 self-selected physicians and linked to administrative databases to capture the provision of services to the patients served for the 12 month period ending June 30, 2013, and the characteristics of the patients at the beginning of the study period. Two stochastic frontier regression models were used to estimate efficiency scores and parameters for two separate outputs: the number of distinct patients seen and the number of visits.
Results
Because of missing data, only 165 physicians were included in the analyses. The average efficiency was 0.72 for both outputs with scores varying from 4 % to 93 % for the visits and 5 % to 94 % for the number of patients seen. We observed that there were both very low and very high efficiency scores within each model. These variations were larger than variations in average scores across models
Recommended from our members
Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil) both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities
Bioaccumulation and ecotoxicity of carbon nanotubes
Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships
Post-mortem volatiles of vertebrate tissue
Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
CatĂĄlogo TaxonĂŽmico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the CatĂĄlogo TaxonĂŽmico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
- âŠ