6 research outputs found

    Phase I Randomised Clinical Trial of an HIV-1CN54, Clade C, Trimeric Envelope Vaccine Candidate Delivered Vaginally

    Get PDF
    We conducted a phase 1 double-blind randomised controlled trial (RCT) of a HIV-1 envelope protein (CN54 gp140) candidate vaccine delivered vaginally to assess immunogenicity and safety. It was hypothesised that repeated delivery of gp140 may facilitate antigen uptake and presentation at this mucosal surface. Twenty two healthy female volunteers aged 18–45 years were entered into the trial, the first receiving open-label active product. Subsequently, 16 women were randomised to receive 9 doses of 100 µg of gp140 in 3 ml of a Carbopol 974P based gel, 5 were randomised to placebo solution in the same gel, delivered vaginally via an applicator. Participants delivered the vaccine three times a week over three weeks during one menstrual cycle, and were followed up for two further months. There were no serious adverse events, and the vaccine was well tolerated. No sustained systemic or local IgG, IgA, or T cell responses to the gp140 were detected following vaginal immunisations. Repeated vaginal immunisation with a HIV-1 envelope protein alone formulated in Carbopol gel was safe, but did not induce local or systemic immune responses in healthy women

    Antibody Evasion by a Gammaherpesvirus O-Glycan Shield

    Get PDF
    All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog - gp180 - contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target

    Different approaches in metabolomic analysis of plants exposed to selenium: a comprehensive review

    No full text
    corecore