20 research outputs found

    Fluid flow through porous media using distinct element based numerical method

    Get PDF
    Many analytical and numerical methods have been developed to describe and analyse fluid flow through the reservoir’s porous media. The medium considered by most of these models is continuum based homogeneous media. But if the formation is not homogenous or if there is some discontinuity in the formation, most of these models become very complex and their solutions lose their accuracy, especially when the shape or reservoir geometry and boundary conditions are complex. In this paper, distinct element method (DEM) is used to simulate fluid flow in porous media. The DEM method is independent of the initial and boundary conditions, as well as reservoir geometry and discontinuity. The DEM based model proposed in this study is appeared to be unique in nature with capability to be used for any reservoir with higher degrees of complexity associated with the shape and geometry of its porous media, conditions of fluid flow, as well as initial and boundary conditions. This model has first been developed by Itasca Consulting Company and is further improved in this paper. Since the release of the model by Itasca, it has not been validated for fluid flow application in porous media, especially in case of petroleum reservoir. In this paper, two scenarios of linear and radial fluid flow in a finite reservoir are considered. Analytical models for these two cases are developed to set a benchmark for the comparison of simulation data. It is demonstrated that the simulation results are in good agreement with analytical results. Another major improvement in the model is using the servo controlled walls instead of particles to introduce tectonic stresses on the formation to simulate more realistic situations. The proposed model is then used to analyse fluid flow and pressure behaviour for hydraulically induced fractured and naturally fractured reservoir to justify the potential application of the model

    The impact of tides on the capillary transition zone

    Get PDF
    The capillary transition zone, also known as the capillary fringe, is a zone where water saturations decrease with height above the water table/oil–water contact as a result of capillary action. In some oil reservoirs, this zone may contain a significant proportion of the oil in place. In groundwater assessments, the capillary fringe can profoundly affect contaminant transport. In this study, we investigated the influence of a tidally induced, semi-diurnal, change in water table depth on the water saturation distribution in the capillary fringe/transition zone. The investigation used a mixture of laboratory experiments, in which the change in saturation with depth was monitored over a period of 90 days, and numerical simulation. We show that tidal changes in water table depth can significantly alter the vertical water saturation profile from what would be predicted using capillary–gravity equilibrium and the drainage or imbibition capillary pressure curves

    Carbon sequestration potential of the South Wales Coalfield

    Get PDF
    This paper presents a preliminary evaluation of the carbon dioxide (CO2) storage capacity of the unmined coal resources in the South Wales Coalfield, UK. Although a significant amount of the remaining coal may be mineable through traditional techniques, the prospects for opening new mines appear poor. Also, many of the South Wales coal seams are lying unused since they are too deep to be mined economically using conventional methods. There is instead a growing worldwide interest in the potential for releasing the energy value of such coal reserves through alternative technologies – for example through carbon dioxide sequestration with enhanced coal bed methane recovery. In this study, geographical information systems and three-dimensional interpolation are used to obtain the total unmined coal resource below 500 m deep, where the candidate seams for carbon dioxide sequestration are found. The ‘proved’, ‘probable’ and ‘possible’ carbon dioxide storage capacities of the South Wales Coalfield are then obtained using an established methodology. Input parameters are based on statistical distributions, considering a combination of laboratory coal characterisation results and literature review. The results are a proved capacity of 70·1 Mt carbon dioxide, a probable capacity of 104·9 Mt carbon dioxide and a possible capacity of 152·0 Mt carbon dioxide

    A semianalytic time‐resolved poro‐elasto‐plastic model for wellbore stability and stimulation

    No full text
    Wellbore stability problems and stimulation operations call for models helping in understanding the subsurface behaviour and optimizing engineering performance. We present a fast, iteratively coupled model for the flow and mechanical behaviour that employs a time-sequential approach. Updates of pore pressure are calculated in a timestepping approach and propagated analytically to updates of the mechanical response. This way, the spatial and temporal evolution of pressure and mechanical response around a wellbore can be evaluated. The sequential approach facilitates the incorporation of pressure diffusion and of time-dependent plasticity. Also, it facilitates the implementation of permeability evolving with time, due to plasticity or stimulation. The model has been validated by means of a coupled numerical simulator. Its capabilities are demonstrated with a selection of sensitivity runs for typical parameters. Ongoing investigations target geothermal energy operations through the incorporation of thermo-elastic stresses and more advanced plasticity models
    corecore