1,079 research outputs found

    The LOFT mission concept: A status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    Work-related complaints of arm, neck and shoulder among computer office workers in an Asian country: prevalence and validation of a risk-factor questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complaints of arm, neck and/or shoulders (CANS) affects millions of computer office workers. However its prevalence and associated risk factors in developing countries are yet to be investigated, due to non availability of validated assessment tools for these countries. We evaluated the 1-year prevalence of CANS among computer office workers in Sri Lanka and tested the psychometric properties of a translated risk factor questionnaire.</p> <p>Methods</p> <p>Computer office workers at a telecommunication company in Sri Lankan received the Sinhalese version of the validated Maastricht Upper Extremity Questionnaire (MUEQ). The 94 items in the questionnaire covers demographic characteristics, CANS and evaluates potential risk factors for CANS in six domains. Forward and backward translation of the MUEQ was done by two independent bi-lingual translators. One-year prevalence of CANS and psychometric properties of the Sinhalese questionnaire were investigated.</p> <p>Results</p> <p>Response rate was 97.7% (n = 440). Males were 42.7%. Mean age was 38.2 ± 9.5 years. One-year prevalence of CANS was 63.6% (mild-53.7% and severe-10%). The highest incidences were for neck (36.1%) and shoulder (34.3%) complaints. Two factors for each domain in the scale were identified by exploratory factor analysis (i.e. work-area, computer-position, incorrect body posture, bad-habits, skills and abilities, decision-making, time-management, work-overload, work-breaks, variation in work, work-environment and social-support). Calculation of internal consistency (Cronbach's alpha 0.43-0.82) and cross-validation provided evidence of reliability and lack of redundancy of items.</p> <p>Conclusion</p> <p>One year prevalence of CANS in the study population corresponds strongly with prevalence in developed countries. Translated version of the MUEQ has satisfactory psychometric properties for it to be used to assess work-related risk factors for development of CANS among Sri Lankan computer office workers.</p

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table

    Search For Heavy Pointlike Dirac Monopoles

    Get PDF
    We have searched for central production of a pair of photons with high transverse energies in ppˉp\bar p collisions at s=1.8\sqrt{s} = 1.8 TeV using 70pb170 pb^{-1} of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610,870,or1580GeV/c2610, 870, or 1580 GeV/c^2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.Comment: 12 pages, 4 figure

    The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV

    Get PDF
    Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let

    Zgamma Production in pbarp Collisions at sqrt(s)=1.8 TeV and Limits on Anomalous ZZgamma and Zgammagamma Couplings

    Full text link
    We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.Comment: 17 Pages including 2 Figures. Submitted to PR

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    A Measurement of the W Boson Mass

    Full text link
    We report a measurement of the W boson mass based on an integrated luminosity of 82 pb1^{-1} from \ppbar collisions at s=1.8\sqrt{s}=1.8 TeV recorded in 1994--1995 by the \Dzero detector at the Fermilab Tevatron. We identify W bosons by their decays to eνe\nu and extract the mass by fitting the transverse mass spectrum from 28,323 W boson candidates. A sample of 3,563 dielectron events, mostly due to Z to ee decays, constrains models of W boson production and the detector. We measure \mw=80.44\pm0.10(stat)\pm0.07(syst)~GeV. By combining this measurement with our result from the 1992--1993 data set, we obtain \mw=80.43\pm0.11 GeV.Comment: 11 pages, 5 figure
    corecore