19,679 research outputs found

    A time of flight method to measure the speed of sound using a stereo sound card

    Full text link
    We present an inexpensive apparatus for measuring the speed of sound, with a time of flight method, using a computer with a stereo sound board. Students measure the speed of sound by timing the delay between the arrivals of a pulse to two microphones placed at different distances from the source. It can serve as a very effective demonstration, providing a quick measurement of the speed of sound in air; we have used it with great success in Open Days in our Department. It can also be used for a full fledged laboratory determination of the speed of sound in air.Comment: Accepted for publication in The Physics Teache

    Ensaio comparativo avançado de arroz irrigado (várzea) em Belém, Pará - ano agrícola 1998/1999.

    Get PDF
    bitstream/item/52944/1/PesquisaAnd0180001.pd

    Jaburu: cultivar de arroz lançada para o ecossistema de várzea no Estado do Pará.

    Get PDF
    bitstream/item/28011/1/com.tec.73.pd

    BRS Biguá: cultivar de arroz para as várzeas do Estado do Pará.

    Get PDF
    bitstream/item/18743/1/com.tec.91.pdfDisponível também on-line

    Eigenfunctions of the Laplacian and associated Ruelle operator

    Full text link
    Let Γ\Gamma be a co-compact Fuchsian group of isometries on the Poincar\'e disk \DD and Δ\Delta the corresponding hyperbolic Laplace operator. Any smooth eigenfunction ff of Δ\Delta, equivariant by Γ\Gamma with real eigenvalue λ=s(1s)\lambda=-s(1-s), where s=1/2+its={1/2}+ it, admits an integral representation by a distribution \dd_{f,s} (the Helgason distribution) which is equivariant by Γ\Gamma and supported at infinity \partial\DD=\SS^1. The geodesic flow on the compact surface \DD/\Gamma is conjugate to a suspension over a natural extension of a piecewise analytic map T:\SS^1\to\SS^1, the so-called Bowen-Series transformation. Let s\ll_s be the complex Ruelle transfer operator associated to the jacobian slnT-s\ln |T'|. M. Pollicott showed that \dd_{f,s} is an eigenfunction of the dual operator s\ll_s^* for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction ψf,s\psi_{f,s} of s\ll_s for the eigenvalue 1, given by an integral formula \psi_{f,s} (\xi)=\int \frac{J(\xi,\eta)}{|\xi-\eta|^{2s}} \dd_{f,s} (d\eta), \noindent where J(ξ,η)J(\xi,\eta) is a {0,1}\{0,1\}-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \DD/\Gamma

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    Electrical transport properties of CuS single crystals

    Get PDF
    Electrical resistivity, transverse magnetoresistance and thermoelectric power measurements were performed on CuS high quality single crystals in the range 1.2-300 K and under fields of up to 16 T. The zero field resistivity data are well described below 55 K by a quasi-2D model, consistent with a carrier confinement at lower temperatures, before the transition to the superconducting state. The transverse magnetoresistance develops mainly below 30 K and attains values as large as 470% for a 16 T field at 5 K, this behaviour being ascribed to a band effect mechanism, with a possible magnetic field induced DOS change at the Fermi level. The transverse magnetoresistance shows no signs of saturation, following a power law with field Delta rho/rho(0) proportional to H(1.4), suggesting the existence of open orbits for carriers at the Fermi surface. The thermoelectric power shows an unusual temperature dependence, probably as a result of the complex band structure of CuS

    Electronic doping of graphene by deposited transition metal atoms

    Full text link
    We perform a phenomenological analysis of the problem of the electronic doping of a graphene sheet by deposited transition metal atoms, which aggregate in clusters. The sample is placed in a capacitor device such that the electronic doping of graphene can be varied by the application of a gate voltage and such that transport measurements can be performed via the application of a (much smaller) voltage along the graphene sample, as reported in the work of Pi et al. [Phys. Rev. B 80, 075406 (2009)]. The analysis allows us to explain the thermodynamic properties of the device, such as the level of doping of graphene and the ionisation potential of the metal clusters in terms of the chemical interaction between graphene and the clusters. We are also able, by modelling the metallic clusters as perfect conducting spheres, to determine the scattering potential due to these clusters on the electronic carriers of graphene and hence the contribution of these clusters to the resistivity of the sample. The model presented is able to explain the measurements performed by Pi et al. on Pt-covered graphene samples at the lowest metallic coverages measured and we also present a theoretical argument based on the above model that explains why significant deviations from such a theory are observed at higher levels of coverage.Comment: 16 pages, 10 figure
    corecore