17,091 research outputs found

    Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics

    Get PDF
    Social groups are at particular risk for parasite infection, which is heightened in eusocial insects by the low genetic diversity of individuals within a colony. To combat this, adult ants have evolved a suite of defenses to protect each other, including the production of antimicrobial secretions. However, it is the brood in a colony that are most vulnerable to parasites because their individual defenses are limited, and the nest material in which ants live is also likely to be prone to colonization by potential parasites. Here, we investigate in two ant species whether adult workers use their antimicrobial secretions not only to protect each other but also to sanitize the vulnerable brood and nest material. We find that, in both leaf-cutting ants and weaver ants, the survival of the brood was reduced and the sporulation of parasitic fungi from them increased, when the workers nursing them lacked functional antimicrobial-producing glands. This was the case for both larvae that were experimentally treated with a fungal parasite (Metarhizium) and control larvae which developed infections of an opportunistic fungal parasite (Aspergillus). Similarly, fungi were more likely to grow on the nest material of both ant species if the glands of attending workers were blocked. The results show that the defense of brood and sanitization of nest material are important functions of the antimicrobial secretions of adult ants and that ubiquitous, opportunistic fungi may be a more important driver of the evolution of these defenses than rarer, specialist parasites

    Irrigação na cultura da bucha vegetal.

    Get PDF
    bitstream/item/81873/1/ct-116.pd

    Muonic hydrogen cascade time and lifetime of the short-lived 2S2S state

    Get PDF
    Metastable 2S{2S} muonic-hydrogen atoms undergo collisional 2S{2S}-quenching, with rates which depend strongly on whether the μp\mu p kinetic energy is above or below the 2S→2P{2S}\to {2P} energy threshold. Above threshold, collisional 2S→2P{2S} \to {2P} excitation followed by fast radiative 2P→1S{2P} \to {1S} deexcitation is allowed. The corresponding short-lived μp(2S)\mu p ({2S}) component was measured at 0.6 hPa H2\mathrm{H}_2 room temperature gas pressure, with lifetime τ2Sshort=165−29+38\tau_{2S}^\mathrm{short} = 165 ^{+38}_{-29} ns (i.e., λ2Squench=7.9−1.6+1.8×1012s−1\lambda_{2S}^\mathrm{quench} = 7.9 ^{+1.8}_{-1.6} \times 10^{12} \mathrm{s}^{-1} at liquid-hydrogen density) and population ϵ2Sshort=1.70−0.56+0.80\epsilon_{2S}^\mathrm{short} = 1.70^{+0.80}_{-0.56} % (per μp\mu p atom). In addition, a value of the μp\mu p cascade time, Tcasμp=(37±5)T_\mathrm{cas}^{\mu p} = (37\pm5) ns, was found.Comment: 4 pages, 3 figure

    Fibra efetiva para vacas em lactação.

    Get PDF
    bitstream/item/143027/1/1445.pd

    Instanton on toric singularities and black hole countings

    Get PDF
    We compute the instanton partition function for N=4{\cal N}=4 U(N) gauge theories living on toric varieties, mainly of type R4/Γp,q\R^4/\Gamma_{p,q} including Ap−1A_{p-1} or O_{\PP_1}(-p) surfaces. The results provide microscopic formulas for the partition functions of black holes made out of D4-D2-D0 bound states wrapping four-dimensional toric varieties inside a Calabi-Yau. The partition function gets contributions from regular and fractional instantons. Regular instantons are described in terms of symmetric products of the four-dimensional variety. Fractional instantons are built out of elementary self-dual connections with no moduli carrying non-trivial fluxes along the exceptional cycles of the variety. The fractional instanton contribution agrees with recent results based on 2d SYM analysis. The partition function, in the large charge limit, reproduces the supergravity macroscopic formulae for the D4-D2-D0 black hole entropy.Comment: 29 pages, 3 fig Section 5 is improved by the inclusion of a detailed comparison between the instanton partition function and the D4-D2-D0 black hole entropy formula coming from supergravit
    • …
    corecore