11,056 research outputs found

    Fuzzy logic control for energy saving in autonomous electric vehicles

    Get PDF
    Limited battery capacity and excessive battery dimensions have been two major limiting factors in the rapid advancement of electric vehicles. An alternative to increasing battery capacities is to use better: intelligent control techniques which save energy on-board while preserving the performance that will extend the range with the same or even smaller battery capacity and dimensions. In this paper, we present a Type-2 Fuzzy Logic Controller (Type-2 FLC) as the speed controller, acting as the Driver Model Controller (DMC) in Autonomous Electric Vehicles (AEV). The DMC is implemented using realtime control hardware and tested on a scaled down version of a back to back connected brushless DC motor setup where the actual vehicle dynamics are modelled with a Hardware-In-the-Loop (HIL) system. Using the minimization of the Integral Absolute Error (IAE) has been the control design criteria and the performance is compared against Type-1 Fuzzy Logic and Proportional Integral Derivative DMCs. Particle swarm optimization is used in the control design. Comparisons on energy consumption and maximum power demand have been carried out using HIL system for NEDC and ARTEMIS drive cycles. Experimental results show that Type-2 FLC saves energy by a substantial amount while simultaneously achieving the best IAE of the control strategies tested

    Metallicity of the polar disk in NGC4650A: constraints for cold accretion scenario

    Full text link
    We used high resolution spectra in the optical and near-infrared wavelength range to study the abundance ratios and metallicities of the HII regions associated with the polar disk in NGC4650A, in order to put constraints on the formation of the polar disk through cold gas accretion along a filament; this might be the most realistic way by which galaxies get their gas. We have compared the measured metallicities for the polar structure in NGC4650A with those of different morphological types and we have found that they are similar to those of late-type galaxies: such results is consistent with a polar disk formed by accretion from cosmic web filaments of external cold gas.Comment: Proceeding of the conference "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 200

    Astrophysics in S.Co.P.E

    Get PDF
    S.Co.P.E. is one of the four projects funded by the Italian Government in order to provide Southern Italy with a distributed computing infrastructure for fundamental science. Beside being aimed at building the infrastructure, S.Co.P.E. is also actively pursuing research in several areas among which astrophysics and observational cosmology. We shortly summarize the most significant results obtained in the first two years of the project and related to the development of middleware and Data Mining tools for the Virtual Observatory

    An Exploration of the Latent Space of a Convolutional Variational Autoencoder for the Generation of Musical Instrument Tones

    Get PDF
    Variational Autoencoders (VAEs) constitute one of the most significant deep generative models for the creation of synthetic samples. In the field of audio synthesis, VAEs have been widely used for the generation of natural and expressive sounds, such as music or speech. However, VAEs are often considered black boxes and the attributes that contribute to the synthesis of a sound are yet unsolved. Existing research focused on the way input data can influence the generation of latent space, and how this latent space can create synthetic data, is still insufficient. In this manuscript, we investigate the interpretability of the latent space of VAEs and the impact of each attribute of this space on the generation of synthetic instrumental notes. The contribution to the body of knowledge of this research is to offer, for both the XAI and sound community, an approach for interpreting how the latent space generates new samples. This is based on sensitivity and feature ablation analyses, and descriptive statistics

    Interpretable timbre synthesis using variational autoencoders regularized on timbre descriptors

    Get PDF
    Controllable timbre synthesis has been a subject of research for several decades, and deep neural networks have been the most successful in this area. Deep generative models such as Variational Autoencoders (VAEs) have the ability to generate a high-level representation of audio while providing a structured latent space. Despite their advantages, the interpretability of these latent spaces in terms of human perception is often limited. To address this limitation and enhance the control over timbre generation, we propose a regularized VAE-based latent space that incorporates timbre descriptors. Moreover, we suggest a more concise representation of sound by utilizing its harmonic content, in order to minimize the dimensionality of the latent space

    An investigation of the reconstruction capacity of stacked convolutional autoencoders for log-mel-spectrograms

    Get PDF
    In audio processing applications, the generation of expressive sounds based on high-level representations demonstrates a high demand. These representations can be used to manipulate the timbre and influence the synthesis of creative instrumental notes. Modern algorithms, such as neural networks, have inspired the development of expressive synthesizers based on musical instrument timbre compression. Unsupervised deep learning methods can achieve audio compression by training the network to learn a mapping from waveforms or spectrograms to low-dimensional representations. This study investigates the use of stacked convolutional autoencoders for the compression of time-frequency audio representations for a variety of instruments for a single pitch. Further exploration of hyper-parameters and regularization techniques is demonstrated to enhance the performance of the initial design. In an unsupervised manner, the network is able to reconstruct a monophonic and harmonic sound based on latent representations. In addition, we introduce an evaluation metric to measure the similarity between the original and reconstructed samples. Evaluating a deep generative model for the synthesis of sound is a challenging task. Our approach is based on the accuracy of the generated frequencies as it presents a significant metric for the perception of harmonic sounds. This work is expected to accelerate future experiments on audio compression using neural autoencoders
    corecore