267 research outputs found

    Laminage de tubes ODS

    Get PDF
    Ce travail porte sur la mise en uvre de procédé de fabrication de tubes pour des nuances ODS par laminage à pas de pèlerin. Une première partie traitera de la détermination des lois de comportement et des paramètres adaptés pour étudier les nuances ODS dans les sollicitations liées au laminage. Ensuite on montrera la modélisation éléments finis d'une machine de laboratoire de type HPTR avant d'étendre les méthodologies de simulation au dispositif industriel qui est un laminoir VMR

    Development and clinical validation of real-time artificial intelligence diagnostic companion for fetal ultrasound examination

    Get PDF
    OBJECTIVE: Prenatal diagnosis of a rare disease on ultrasound relies on a physician's ability to remember an intractable amount of knowledge. We developed a real-time decision support system (DSS) that suggests, at each step of the examination, the next phenotypic feature to assess, optimizing the diagnostic pathway to the smallest number of possible diagnoses. The objective of this study was to evaluate the performance of this real-time DSS using clinical data. METHODS: This validation study was conducted on a database of 549 perinatal phenotypes collected from two referral centers (one in France and one in the UK). Inclusion criteria were: at least one anomaly was visible on fetal ultrasound after 11 weeks' gestation; the anomaly was confirmed postnatally; an associated rare disease was confirmed or ruled out based on postnatal/postmortem investigation, including physical examination, genetic testing and imaging; and, when confirmed, the syndrome was known by the DSS software. The cases were assessed retrospectively by the software, using either the full phenotype as a single input, or a stepwise input of phenotypic features, as prompted by the software, mimicking its use in a real-life clinical setting. Adjudication of discordant cases, in which there was disagreement between the DSS output and the postnatally confirmed (‘ascertained’) diagnosis, was performed by a panel of external experts. The proportion of ascertained diagnoses within the software's top-10 differential diagnoses output was evaluated, as well as the sensitivity and specificity of the software to select correctly as its best guess a syndromic or isolated condition. RESULTS: The dataset covered 110/408 (27%) diagnoses within the software's database, yielding a cumulative prevalence of 83%. For syndromic cases, the ascertained diagnosis was within the top-10 list in 93% and 83% of cases using the full-phenotype and stepwise input, respectively, after adjudication. The full-phenotype and stepwise approaches were associated, respectively, with a specificity of 94% and 96% and a sensitivity of 99% and 84%. The stepwise approach required an average of 13 queries to reach the final set of diagnoses. CONCLUSIONS: The DSS showed high performance when applied to real-world data. This validation study suggests that such software can improve perinatal care, efficiently providing complex and otherwise overlooked knowledge to care-providers involved in ultrasound-based prenatal diagnosis. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology

    Development of an automated DNA purification module using a micro-fabricated pillar chip

    Full text link
    We present a fully automated DNA purification module comprised of a micro-fabricated chip and sequential injection analysis system that is designed for use within autonomous instruments that continuously monitor the environment for the presence of biological threat agents. The chip has an elliptical flow channel containing a bed (3.5 &times; 3.5 mm) of silica-coated pillars with height, width and center-to-center spacing of 200, 15, and 30 &micro;m, respectively, which provides a relatively large surface area (ca. 3 cm2) for DNA capture in the presence of chaotropic agents. We have characterized the effect of various fluidic parameters on extraction performance, including sample input volume, capture flow rate, and elution volume. The flow-through design made the pillar chip completely reusable; carryover was eliminated by flushing lines with sodium hypochlorite and deionized water between assays. A mass balance was conducted to determine the fate of input DNA not recovered in the eluent. The device was capable of purifying and recovering Bacillus anthracis genomic DNA (input masses from 0.32 to 320 pg) from spiked environmental aerosol samples, for subsequent analysis using polymerase chain reaction-based assays.<br /
    corecore