
This is a preprint of a paper intended for publication in a journal or 
proceedings. Since changes may be made before publication, this 
preprint should not be cited or reproduced without permission of the 
author. This document was prepared as an account of work 
sponsored by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, or any of 
their employees, makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for any third party’s use, 
or the results of such use, of any information, apparatus, product or 
process disclosed in this report, or represents that its use by such 
third party would not infringe privately owned rights. The views 
expressed in this paper are not necessarily those of the United 
States Government or the sponsoring agency. 

INL/CON-05-01051 
Rev. 1

PREPRINT

Functional Stability of a 
Mixed Microbial 
Consortium Producing 
PHA From Waste Carbon 
Sources

28th Symposium on Biotechnology for 
Fuels and Chemicals 

Erik R. Coats 
Frank J. Loge 
William A. Smith 
David N. Thompson 
Michael P. Wolcott 

April 2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71313059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  1 

Functional Stability of a Mixed Microbial Consortium Producing PHA from Waste 
Carbon Sources 

Erik R. Coats1, Frank J. Loge2*, William A. Smith3, David N. Thompson3, Michael P. 
Wolcott4

Submitted to: 
Applied Biochemistry and Biotechnology 

April 2006 
Revised October 2006 

1Department of Civil Engineering, University of Idaho, PO Box 441022, Moscow, Idaho 
83844-1022.
2*Department of Civil and Environmental Engineering, University of California Davis, 1 
Shields Avenue, Davis, CA 95616.  Correspondence concerning this paper should be 
addressed to him at Phone: (530) 754-2297; FAX: (530) 752-7872; email: 
fjloge@ucdavis.edu.
3Biotechnology Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 
83415-2203
4Department of Civil and Environmental Engineering, Washington State University, 
Pullman, WA 99164-2910 



  2 

Abstract

Polyhydroxyalkanoates (PHAs) represent an environmentally-effective alternative to 

synthetic thermoplastics; however, current production practices are not sustainable.  In 

this study, PHA production was accomplished in sequencing batch bioreactors utilizing 

real wastewaters and mixed microbial consortia from municipal activated sludge as 

inoculum.  Polymer production reached 85%, 53%, and 10% of the cell dry weight from 

methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary 

solids, and biodiesel wastewater, respectively.  Employing denaturing gradient gel 

electrophoresis of 16S-rDNA from PCR-amplified DNA extracts, distinctly different 

communities were observed between and within wastewaters following enrichment.  

Most importantly, functional stability was maintained despite differing and contrasting 

microbial populations. 

Key Words:  polyhydroxyalkanoates; wastewater; activated sludge; denaturing 

gradient gel electrophoresis; DGGE 
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Introduction 

Engineered biological systems have historically been utilized principally for the 

remediation and/or treatment of anthropogenic-derived pollution.  Only in recent years 

has this environmental management discipline, appropriately referred to as environmental 

biotechnology (1), been recognized for its potential to synthesize commodities and 

provide services beyond waste treatment (1).  However, this proposition is not without 

challenges.  Foremost, any proposed commodity-producing biologically-based process 

must be relatively easy to operate, stable, and largely self-correcting (1), which demands 

functional stability within the anticipated diverse microbial community.  Although this 

fundamental requirement is not necessarily congruent with all current biological 

treatment processes (e.g., biological nitrogen removal; biological phosphorus removal 

(2,3)), recent research applying advanced molecular techniques provides evidence of 

stable ecological functions within diverse and seemingly different mixed microbial 

populations (4,5).  In fact, ecological resilience and maintenance of function is proposed 

to be predicated on species diversity (6).

Within the context of environmental biotechnology and commodity production are 

biologically-derived polyesters known as polyhydroxyalkanoates (PHAs), which 

represent a potentially sustainable replacement to fossil-fuel based thermoplastics.  

Synthesis of PHAs, which serve as bacterial carbon and energy storage reserves, is 

currently estimated to be accomplished by over 300 different bacterial species in the form 

of cytoplasmic granules (7).  Biosynthesis is stimulated by either excess soluble carbon 

with a concurrent macronutrient limitation (typically limited on either nitrogen or 

phosphorus), a limitation in a terminal electron acceptor (with oxygen as the most 
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common), or a so-called feast/famine environment wherein microorganisms realize a 

transient excess of soluble carbon without any other nutrient limitations (8).  Poly-3-

hydroxybutyrate (PHB or P3HB) was the first PHA discovered (over 75 years ago), and 

hence is the most extensively characterized type (9,10), although many more forms of 

hydroxyalkanoic monomer units have since been identified (9).  Common precursors to 

PHA synthesis include simple sugars such as glucose and fructose, and organic acids 

such as acetic and propionic acid.  The type of carbon substrate dictates the polymeric 

structure of the PHA (9), with some of the most commonly studied forms including PHB, 

poly-hydroxyvalerate (PHV), and poly-4-hydroxybutyrate (P4HB).  In turn, each form of 

PHA yields different polymer properties.  PHB exhibits similar properties to 

polypropylene, including melting temperature and crystallinity, but the polymer is brittle 

upon crystallization and exhibits little stress resistance (9).  Polymer improvements have 

been accomplished through copolymerization with PHV to increase ductility and impact 

resistance and lower processing temperatures (9).

Current commercial PHA production practices utilize pure microbial cultures grown on 

renewable, but refined, feedstocks (e.g., glucose) under sterile conditions (11), and hence 

are not necessarily sustainable (12,13).  However, recognizing the apparent propensity for 

wild microbial consortia to synthesize the polymer (14-16), commercial production of 

PHA would theoretically appear to be a natural extension of wastewater treatment.  In 

fact PHA synthesis is empirically associated with certain municipal wastewater treatment 

processes (17-19), although biological synthesis of PHA in full-scale wastewater 

treatment facilities, estimated at upwards of 4% (w/w) (data not shown), falls short of 

quantities necessary for commercial exploitation.  Nevertheless, recognizing that many 
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waste streams are rich in PHA precursors, the potential exists for PHA-production 

concurrent with wastewater treatment.   

As proof of this concept, we have previously proposed and implemented an integrated 

PHA production and wastewater treatment process for municipal wastewaters (Coats et. 

al., in review).  In this scheme, wastewater treatment would occur in a biological 

treatment train designed to create selective environmental pressures necessary to achieve 

treatment objectives and concurrently enrich for microorganisms capable of producing 

PHA (Figure 1).  Mass production of PHA would occur in a separate biological reactor 

(termed a sidestream reactor) receiving biomass routinely wasted from the treatment 

reactor.  Primary solids fermentate, derived from a primary solids fermentation reactor, 

would be supplied to both the wastewater treatment and PHA production reactors.  

Implementation of this integrated PHA production-wastewater treatment scheme resulted 

in a PHA yield of ca. 10% to 22% (w/w) while concurrently realizing soluble carbon 

removal (Figure 2); in the sidestream reactor, PHA production peaked at ca. 53% (w/w) 

within 3.5 hours (Figure 3).  Similar results were achieved in a sidestream reactor 

utilizing solids obtained from a wastewater treatment reactor operated under strictly 

aerobic conditions (data not shown).  In all cases PHA production followed a feast-

famine pattern, and maximum PHA production consistently occurred at a defined time 

point after feeding concurrent with maximum reduction in readily metabolized soluble 

carbon.  Importantly, copolymerization of both PHB and PHV was achieved (Figure 3).  

The occurrence of this feast-famine condition is consistent with previous investigations 

(8,14,15) that focused on environmental matrices other than wild microbial consortia and 

wastewater.
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The goal of the research presented herein was to extend the proposed PHA-wastewater 

treatment process to industrial wastewater, and to investigate the functional stability and 

general diversity of mixed microbial consortia within different PHA-producing 

wastewater environments.  The specific objectives were to i) demonstrate that PHA 

synthesis can be achieved by a mixed microbial consortium on industrial wastewaters, ii) 

demonstrate process and functional stability in a municipal wastewater environment 

following process upset, and iii) preliminarily characterize the extent of microbial 

diversity of the PHA-producing consortium within a particular wastewater and among 

different wastewaters. 

Materials and Methods 

Source of Microorganisms.  The mixed microbial seed was obtained from the 

Moscow, Idaho, wastewater treatment facility, which had been determined, through a 

series of preliminary facility screening studies (data not shown), to be capable of 

synthesizing PHA.  The microbial seed for the primary solids fermenter was obtained 

from the anaerobic digester at the Pullman, Washington wastewater treatment plant.   

Source of Wastewater.  Foul condensate wastewater was obtained from the Lewiston, 

Idaho, Potlatch Corporation pulp-and-paper mill.  Biodiesel-derived wastewater was 

provided by the University of Idaho Department of Biological and Agricultural 

Engineering (Moscow, Idaho).  Two batches of biodiesel wastewater were obtained, one 

with residual ethanol and one without, and each batch was fed into two reactors, one at 

1% (v/v) and the second at 5% (v/v).  Thickened primary solids, for operation of the 

fermenter, were obtained from the Pullman, Washington wastewater treatment facility.  
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Raw municipal wastewater was obtained from the Moscow, Idaho wastewater treatment 

facility.

Culture Conditions and Harvesting Procedures. PHA production on pulp-and-paper 

mill foul condensate wastewater was accomplished in three 4-L completely mixed 

reactors.  All reactors were operated as sequencing batch reactors (SBRs) on a 24-hour 

cycle, with a solids retention time (SRT) of 4 days (reactor PO-A and PO-A1) or 6 days 

(reactor PO-C).  Withdraw and fill cycles of the SBR occurred almost immediately.  

Given that the mixture under reaction in the SBR was not permitted to settle prior to 

withdrawal, the hydraulic retention time (HRT) was equivalent to the SRT.  Reactors PO-

A and PO-C were continually aerated to maintain fully aerobic conditions; reactor PO-A1 

was cycled every 12-hours between anaerobic (first 12 hours) and aerobic environments.  

Anaerobic conditions were established by bubbling nitrogen gas continuously into the 

reactor.  Nitrogen gas and air were supplied through a 9-inch diameter Sanitaire  Silver 

Series II membrane fine bubble disc diffuser (Brown Deer, Wisconsin, USA).  PHB 

production on biodiesel wastewater was accomplished in 500 mL flasks incubated by 

shaking at 250 rpm for 4 days at 30°C.   

Wastewater biosolids fermentate was produced in a 10-L completely-mixed primary 

solids fermenter operated as a SBR, with a 24-hour reaction time, and a SRT and HRT of 

4 days.  The daily decant was centrifuged at ca. 10,000 x g, and the supernatant (e.g. 

fermentate) recovered.  The fermentate-fed anaerobic/aerobic reactor (batch fed daily 

with fermentate) and the raw wastewater-methanol fed reactor (batch fed daily raw 

wastewater and 5 mL of methanol to yield an initial concentration of ca. 0.125% (v/v)), 

consisted of 4-L vessels continuously operated on a 24-hour cycle (anaerobically for six 
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hours following feeding, then aerobically for 18 hours) with a SRT and HRT of 5 days.  

Withdraw and fill cycles of the SBR occurred almost immediately.  Anaerobic conditions 

were accomplished through the continuous supply of nitrogen gas, and were verified 

utilizing a dissolved oxygen probe.  Nitrogen gas and air were supplied through a 9-inch 

diameter Sanitaire  Silver Series II membrane fine bubble disc diffuser (Brown Deer, 

Wisconsin, USA). 

Analytical Techniques.  Soluble chemical oxygen demand (sCOD or COD) tests were 

performed in accordance with Standard Methods 5220-D (20), with samples filtered 

through sterilized 0.22 μm filters prior to analysis (Millipore Corp, Billerica, MA, USA).  

Hach high-range ampules (Hach Company, Loveland, Colorado, USA) were utilized, 

with a Hach COD reactor and a Spectronic® 20 Genesys™ spectrophotometer.  Biomass 

PHA content was determined by gas chromatography/mass spectrometry (GC-MS) as 

previously described (21).  Briefly, dried PHA-rich biomass samples were digested at 

100°C in 2 mL each of acidified methanol (3% v/v sulfuric acid) and chloroform.  

Benzoic acid was added to the chloroform as an internal standard.  Following vigorous 

vortexing of the mixture with 1-mL deionized water, PHA-rich chloroform was recovered 

for analysis.  The chloroform phase was dehydrated by filtering the PHA-rich solution 

through sodium sulfate prior to analysis.  GC-MS was performed on a Thermofinnigan 

PolarisQ iontrap GC-MS instrument (Thermo Electron Corporation) in positive ei mode.  

The sample was introduced using split injection.  Separation was achieved on a ZB1 

(15m, 0.25mm ID) capillary column (Phenomenex, Torrance, California, USA) with 

helium as the carrier gas (1.2 mL min-1) using a temperature program of 40°C (2 min) 

ramped to 200°C at 5°C min-1.  The Xcalibur software program (Thermo Electron 
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Corporation) was used to analyze the data.  The identity of the compounds was confirmed 

by retention time and mass spectral matching with known standards (Lancaster Synthesis, 

Ward Hill, MA, USA) as methyl ester derivatives, and quantified based on the internal 

standard.  Total cellular PHA content was determined on a weight basis (e.g., mass 

PHA:mass of dry biomass, w/w). 

Molecular Methods.  Genomic DNA was extracted from 250 μL liquid samples using 

MoBio UltraClean Soil DNA isolation kit (MoBio Laboratories, Carlsbad, CA).  PCR 

was used to amplify bacterial 16S rDNA using the 341f-GC and 907r primers described 

by Ishii et. al. (22).  Amplification was performed in 25 μL reaction mixtures that 

contained 0.4 pmol of each primer, 0.2 μM of each dNTP, 10 μg mL-1 BSA, 1  PCR 

buffer, 1.5 mM Mg++, 20 units mL-1 of Taq polymerase (Buffer, dNTPs, BSA and 

REDTaq, Sigma-Aldrich, St. Louis, MO), and approximately 100 ng target DNA.  

Reactions began with a 94°C denaturation for 5 minutes, followed by 30 cycles of 94°C 

for 1 minute, 54°C annealing step for 1 minute with a 72°C extension step for 1 minute.  

Final extension was carried out at 72°C for 7 minutes.  Presence of PCR products was 

confirmed by electrophoresis of 2 μL of the reaction mix on 1.5% agarose gels stained 

with 0.5 μg mL-1 ethidium bromide (Bio-Rad Laboratories, Hercules, CA).  Four 

reactions from each sample were pooled to create a single 100 μL composite for 

denaturing gradient gel electrophoresis (DGGE) analysis. 

DGGE (23) was performed with the D-Code system (Bio-Rad) at 60°C and 65 V for 

900 minutes.  Samples (25 μL) were loaded on a 6% (w/v) polyacrylamide gel 

(acrylamide:N,N’-methylene-bisacrylamide ratio, 37.5:1 [Bio-Rad]) in 1 TAE buffer.  

The denaturing gradient was formed by mixing two stock solutions of 6% acrylamide 
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containing 40% and 80% denaturant (7M urea [Bio-Rad] plus 40% [v/v] formamide 

[Sigma Chemical Co., St. Louis, MO]).  The DNA was stained with 0.5 μg mL-1 ethidium 

bromide and imaged at 302 nm using an AlphaImager (Alpha Innotech Corp., San 

Leandro, CA). 

Results and Discussion

Production of PHA on Industrial Wastewater Treatment.

PHA Production in Foul Condensate Wastewater.  Pulp-and-paper mill foul condensate 

wastewater is typically enriched with methanol, yielding a chemical oxygen demand 

(COD) in excess of 10,000 mg L-1.  Methanol can be readily removed from the 

wastewater through biological processes; however, this wastewater is also nutrient 

limited, and the addition of nitrogen, phosphorous, and micro-nutrients is often necessary 

to achieve adequate removal of COD to meet permitted effluent discharge requirements 

(24).  While these nutrient limitations are often viewed as troublesome from a 

conventional wastewater treatment perspective, the coupled high-carbon low-

macro(micro)nutrient environment is potentially ideal for stimulating PHA synthesis.  In 

addition, methanol is a quality carbon source for PHA synthesis (25,26).

Utilizing a PHA-producing mixed microbial seed obtained from the Moscow, Idaho 

wastewater treatment facility, a foul condensate-fed sequencing batch reactor (SBR) 

operated under fully aerobic conditions (reactor PO-A; SRT=4 days) maintained a 

microbial consortium capable of producing PHA at 17.2% (w/w).  Polymer production 

was moderately variable, with a 95% confidence interval of 10.4% to 24.0% (w/w; Table 

1); peak PHA synthesis was 85% (w/w).  Reactor PO-C, which was also operated under 

fully aerobic conditions but with an SRT of 6 days, yielded PHA at 5.0±1.3% (w/w; 95% 
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confidence interval; Table 1); peak PHA synthesis was 7.5% (w/w).  The reactors were 

operated for a period of 4 months.  Analysis of the biomass samples applying gas 

chromatography-mass spectrometry (GC/MS) techniques repeatedly verified both the 

presence and quantity of PHB (Figure 4 presents a typical chromatogram).  Biomass 

samples assayed for PHB were collected during routine reactor decant.  COD levels in 

both reactors were consistently reduced by ca. 10 to 20% (data not shown).

The variability in average and peak PHB yield in the fully aerated reactors can be 

attributed primarily to three factors.  First, the sampling time point may not have 

corresponded to peak cellular PHA concentration.  As evidenced by the temporal 

distribution of PHA synthesis and degradation on fermentate (Figures 2 and 3), the 

sampling time point is critical, since the microbes will readily and rapidly metabolize the 

stored carbon.  Temporal PHB synthesis within a given operational cycle was not 

assessed.  Second, methanol content in the daily feed of foul condensate may have varied 

over time; recognizing that methanol is the primary substrate for PHB synthesis in foul 

condensate wastewater, such variation could significantly affect PHB yield.  Conversely, 

excess methanol has been shown to have an inhibitory effect on overall biomass 

production and PHB synthesis (27).  Third, monoterpenes represent the other primary 

organic carbon constituent in foul condensate (28); these carbon forms, which are much 

more structurally complex than methanol, are biodegraded via different metabolic 

pathways than methanol.  These metabolic processes could have interfered with PHB 

synthesis.

In addition to the above factors, reactor operating conditions adversely influenced PHB 

synthesis.  Increased HRT/SRT (e.g., reactor PO-C), which corresponded to an “older” 



  12 

microbial consortium, appeared to result in more carbon utilized for cell maintenance and 

growth and less for PHB synthesis (Table 1).  Further, as contrasted with reactor PO-A, 

PHB yield was significantly less under alternating anaerobic/aerobic reactor conditions 

(e.g., reactor PO-A1; average 6.9% (w/w); Table 1).  The removal of oxygen appears to 

have created antagonistic conditions for PHB synthesis associated with nearly complete 

inhibition of microbial activity consistent with aerobic methanol oxidation by obligate 

methylotrophs (29).

Methylotrophic bacteria are the principal microbial species associated with PHB 

synthesis on methanol (30,31), and certain species are capable of producing upwards of 

80% PHB (30), which is consistent with our peak yield.  The mechanism for stimulating 

polymer synthesis appears to be one of macronutrient limitation (27,30), which is also 

consistent with our operations.  However, previous research suggests carbon-to-

macronutrient ratios may need to be optimized to maximize PHB synthesis (27,30).  In 

terms of process scale-up, site-specific investigations will be needed to optimize nutrient 

conditions.  However, clearly there is potential to integrate polymer production into this 

industry as a value-added commodity generated during wastewater treatment.   

PHA Production in Biodiesel Wastewater.  Biodiesel is a potential replacement or 

supplement to petroleum-based diesel fuels (32).  However, within the context of green 

engineering (33), the ‘green’ label is arguably a misnomer because the high strength co-

product wastewater stream (32) has simply shifted the environmental impacts within the 

overall life-cycle of the product.  Biodiesel wastewater, which exhibits a COD in excess 

of 10,000,000 mg L-1, principally consists of residual ethanol, glycerol, fatty acid ethyl 

(or methyl) esters, and residual fatty acids (32).  Glycerol, ethanol, and fatty acids are 
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direct precursors to PHA synthesis (25,26).  Production of PHA on biodiesel wastewater 

is not presented here as the exclusive method of making this product ‘green’, but rather as 

an example of how the production of commodities within the context of wastewater 

treatment (viewed here simply as raw materials) can be used to mitigate the shift in 

environmental impacts within the overall life-cycle of a product.

Utilizing biodiesel wastewater and a PHA-producing microbial seed derived from the 

Moscow, Idaho wastewater treatment facility, PHB yield ranged from ca. 6% (w/w) on 

the ethanol-enriched biodiesel to ca. 10% (w/w) on wastewater that contained no ethanol.  

Somewhat surprisingly, the yield on the ethanol-enriched biodiesel wastewater, which 

represents a diverse carbon substrate for PHA synthesis, was lower than the waste stream 

that contained no ethanol.  Concurrent COD reduction was ca. 67% and 60%, 

respectively.  Considering the COD strength of biodiesel, this level of treatment is quite 

significant.  While PHB yield was low, reactor optimization would likely result in 

improved PHA yield concurrent with additional COD reduction.  In fact, previous 

research with pure microbial cultures grown on biodiesel wastewater has yielded upwards 

of 42% PHA (w/w) (32).

Process and Functional Stability following Process Upset.  A fermentate-fed SBR 

(identified as reactor FE-1) operated in an alternating anaerobic/aerobic scheme 

consistently maintained a microbial consortium capable of producing PHA (Figure 2).  

The described conditions were replicated in three discrete reactors operated under steady-

state conditions at different times over a 9 month period.  Comparable treatment 

efficiency and PHA production patterns were achieved each time.  Each of these reactors 

was established with a new microbial seed obtained from the Moscow, Idaho wastewater 
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treatment facility, with the primary solids fermenter operated with similarly new (e.g., 

“fresh”) material.  Moreover, the reactor microbial seed and primary solids were obtained 

under different seasonal conditions (e.g., fall, winter, spring) and under varying City 

wastewater conditions (e.g., with and without the contributions of the seasonally large 

university student populations in Pullman and Moscow).  As further validation of this 

proposed process, the results presented herein were replicated at the University of 

California-Davis utilizing a mixed microbial seed derived from the Lincoln, CA 

wastewater treatment facility and primary solids derived from the Davis, CA wastewater 

treatment facility (data not shown).   

As a contrast to the fermentate-fed wastewater treatment reactor, a mixed microbial 

seed derived from the Moscow, Idaho wastewater treatment facility was cultured on raw 

wastewater augmented with methanol (identified as reactor RW-1).  The consortium 

generally utilized carbon at a constant rate throughout both the anaerobic and aerobic 

periods, and no appreciable PHA synthesis occurred (Figure 5).  A limited quantify of 

PHA was produced in the form of PHB.  Clearly this form of augmentation and reactor 

operation does not yield conditions suitable for concurrent PHA production and 

wastewater treatment.  In fact, the results were comparable to those obtained on foul 

condensate wastewater when the reactor was operated under alternating 

anaerobic/aerobic conditions.

To evaluate how each established microbial consortium would function under dynamic 

nutrient feed conditions (e.g., process upset), recognizing that wastewater constituents 

can vary over time within a municipal wastewater treatment environment, the substrate to 

the respective reactors was switched.  Specifically, the feedstock to reactor RW-1 was 
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converted to fermentate (reactor identified as FE-2), and vice versa (FE-1 renamed as 

RW-2).  Since the reactors were batch fed daily, the conversion was effectively 

instantaneous.  The induced ‘upset’ conditions were associated with i) a significant 

increase in COD (e.g., FE-1 to RW-2), and ii) a significant change in the 

carbon:nitrogen:phosphorus ratios in the substrate (e.g., RW-1 to FE-2, and FE-1 to RW-

2).  All other operating parameters remained the same.  Two interesting mechanistic 

responses were observed.  First, each microbial consortium ultimately switched metabolic 

responses.  For example, the methanol-amended raw wastewater-fed reactor that was 

switched to fermentate ultimately stabilized to cycle carbon consistent with the results 

shown in Figure 2.  Second, the microbial consortium in reactor FE-2 adapted to 

synthesize both PHB and PHV in copious amounts, whereas the consortium was 

previously producing only minimal amounts of PHB.  Conversely, reactor RW-2 yielded 

negligible quantities of PHB, similar to RW-1. 

Mixed Microbial Consortia for the Production of PHA in Wastewaters.  While the 

fact that PHA could be produced by a mixed microbial consortium at a commercial level 

on various wastewaters certainly is significant, and that the consortia demonstrated robust 

functional capabilities, another observation carries similar weight.  Quantitative PHA 

analysis on the original microbial seed indicated ca. 0.2% (w/w) PHB and insignificant 

amounts of PHV, suggesting either limited numbers of PHA-producing organisms, or a 

limited production capacity.  In either case, when exposed to more optimum PHA-

producing conditions, this same PHA-producing consortium flourished.   

Diversity of the PHA-Producing Microbial Population.  DGGE was performed to 

provide preliminary qualitative information regarding microbial community composition 
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in the different reactors as a result of both the contrasting and altered feedstock 

conditions.  The utilized primers amplified a bacterial 16S rDNA region corresponding to 

Escherichia coli positions 356 to 906.  DGGE profiles indicate the number and relative 

abundance of the bacterial 16S rDNA amplicons in the reaction mixture.  Each discrete 

band represents a single amplicon that corresponds to a different bacterial strain present 

in the original sample.  Despite biases of this method described in the literature (34), this 

method nonetheless provides a “fingerprint” that can be used to describe similarities 

between and changes within microbial communities without the need for cultivation or 

cloning and sequencing. 

DGGE analysis was performed on samples from: (1) reactors FE-1, FE-2, and RW-2; 

(2) two foul condensate reactors (PO-A and PO-C); (3) the original microbial seed from 

the Moscow, Idaho EBPR facility; and (4) the primary solids fermenter liquor (e.g., 

fermentate).  The resulting fingerprints revealed starkly different microbial populations, 

with few common bands (Figure 6).  Patterns from FE-1 indicated the presence of at least 

eight different strains with two dominant strains relative to others within the lane.  RW-2 

contained only two distinct bands, which interestingly were not present in FE-1; this is of 

significance given that RW-2 was initially FE-1 before switching feedstock.  The absence 

of common bands between these two samples indicates a complete change in the 

dominant communities present.  FE-2 contained 5 faint bands; contrasting FE-1 and FE-2 

revealed little apparent similarity between populations despite receiving the same 

substrate.  The microbial seed from the Moscow, Idaho wastewater facility (lane D) 

exhibited eight bands of approximately equivalent intensity; additional faint bands were 

observed in replicate electrophoresis gels (data not shown), suggesting a rich, diverse 
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community of bacteria present in the seed material.  Fermenter liquor (lane E) contained 

five bands, two of which were dominant.  Throughout all lanes, smears are interpreted as 

a large number of incompletely resolved bands likely resulting in an underestimate of 

diversity.

Potential explanations for the appearance and disappearance of bands between related 

reactors (e.g., FE-1 versus RW-2; FE-1 versus FE-2; all reactors contrasted with the 

microbial seed) include enrichment of strains that were originally beyond detection, 

addition of microorganisms in the feedstock, or microbial contamination.  Feedstock 

effects are possible, since the clarified fermenter liquor feedstock contained low 

quantities of microorganisms.  However, the DGGE profiles of FE-1 and FE-2 (Figure 6) 

showed minimal-to-no influence of the dominant communities from the feedstock, as 

indicated by the predominant absence of common bands.  The environmental pressure in 

these reactors appears to have selected a microbial consortium exclusive of the not only 

the fermenter liquor feedstock but also the dominant microorganisms in the original seed.  

Raw wastewater from the City of Moscow (no DGGE sample collected) contained less 

than 200 mg L-1 total suspended solids (of which only a small portion would represent 

microbes).  Thus, while this feedstock is potentially a source of inoculum, the cell density 

is low relative to the cell density established within the operating reactor.  However, in 

the absence of DGGE profiles for the raw wastewater there is no way to characterize its 

influence on the resulting communities in the raw wastewater fed reactors. 

In contrast to the appearance and disappearance of multiple bands noted above, results 

from DGGE analysis on samples from reactors PO-A and PO-C (Figure 7) indicated a 

loss of only one band and a subsequent change in the intensities of the other bands.  The 
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lower dilution rate of PO-C resulted in an increased sludge age (e.g., “older” microbial 

population) that appears to have enriched for one member of the community at the 

expense of at least one other, as well as decreased net PHA accumulation as noted above.  

Further, recognizing that PO-C did not receive as much substrate as PO-A, the reduced 

“feast” environment may have also facilitated the enhanced selection of non-PHA 

producing microbes. 

A common approach to understanding the interplay between microbial community 

structure and function in biological wastewater treatment has relied upon the 

identification of the microorganism present in either a single sample or a few samples 

over time (35).  Although there arguably is value in identifying which microorganisms 

are performing the critical functions associated with PHA synthesis, the task is certainly 

daunting, even with the many molecular tools available today.  Conversely, an argument 

can also be made that phylogenetic specificity is not necessary to accomplish phenotypic 

stability; in fact, Rittman et. al. (1) suggest that the field of environmental biotechnology 

within the context of full-scale engineered biological systems should focus on managing 

microbial communities rather than focusing on a “solves-all problems superbug”. 

The results presented herein demonstrate that a diverse microbial consortium can 

achieve a stable function under dynamic conditions, thereby validating an application of 

this “function over structure” approach.  Recognizing the diversity of municipal and 

industrial wastewater streams, and the associated diversity of bioreactor operating 

conditions necessary to treat these wastewaters, this apparently transcendent functional 

stability for PHA synthesis is viewed as a prerequisite condition for ultimate commercial 

development of the proposed PHA process.  Taken together, these results suggest that 
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nutrient conditions more significantly affect microbial function, rather than dominance of 

certain genotypes, and furthermore, that “functional redundancy” (36) results in retention 

of major, or dominant, community functions despite changes in community structure.  

These results further imply that if given a suitable carbon and energy source, reactor 

operational conditions such as induction of a feast/famine regime, the HRT, and/or the 

SRT, rather than starting inoculum composition, drive the microbial functions of PHA 

accumulation in a mixed microbial consortium.   

Conclusions

Based on the results presented herein, the following conclusions can be drawn: 

i) The genetic capability to synthesize PHA appears to be common in mixed 

microbial consortiums present in conventional wastewater treatment bioreactors, 

as demonstrated through process success in two geographically distinct regions 

and on different waste carbon substrates.

ii) The proposed process can recover from a process upset associated with 

instantaneous changes in either substrate carbon concentration or 

carbon:nitrogen:phosphorus ratios. 

iii) The genetic capability to synthesize PHA (e.g., function) is a critical factor for 

process success, rather than the presence of a specific microbial structure. 

iv) Successful integration of PHA production with wastewater treatment will demand 

optimizing bioreactor operations (e.g., SRT, HRT, operating environment) with 

the substrate. 

v) Additional investigations are necessary to develop appropriate design and 

operational criteria such that the proposed process can be successfully scaled up.  
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Within this context, investigations should be conducted to identify the specific 

microbes producing PHA, which could generate mechanisms to monitor and 

maintain process success. 
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Table 1. 

PHB (% w/w) Reactor 
Average 95% Confidence 

Interval 
Maximum

PO-A 17.2 6.8 84.6 
PO-C 5.0 1.3 7.5 

PO-A1 6.6 1.6 16.8 
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