5 research outputs found

    Hot-Electron Noise Features in Silicon Crystals Operating Under Periodic signals

    Get PDF
    We study the intrinsic noise in n-type Si crystals operating under high-frequency periodic electric fields. To simulate the dy- namics of electrons in the bulk, by taking into account the main details of band structure, scattering processes, as well as heating effects, a Monte Carlo approach is used. The noise properties are investigated by computing the velocity fluctuations correlation function, its spectral density, and the total noise power for different values of the amplitude and frequency of the driving field. We show that the noise features are significantly affected by the electric field amplitude and frequency and discuss their peculiari- ties in comparison with those exhibited in the static field case. We find the integrated spectral density, i. e. the total noise power, monotonically reducing its value with the increase of the field frequency, for each amplitude of the applied field. These results can be considered a first step towards a full understanding of the physical characteristics of electronic noise in Si devices, driven by periodic electric fields, relevant, for example, for harmonic generation purpose

    Monte Carlo Simulation of Spin Relaxation of Conduction Electrons in Silicon

    Get PDF
    Recently, electrical injection of spin polarization in n-type and p-type silicon up to room-temperature has been experimental- ly carried out. Despite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on the spin depolarization process in silicon structures, in a wide range of values of temperature, doping concentration and amplitude of external fields, is still in a developing stage. In this contribution we use a semiclassical multiparti- cle Monte Carlo approach to simulate the electron transport and spin dynamics in lightly doped n-type Si crystals and numerically calculate the spin lifetimes of drifting electrons. Spin flipping is taken into account through the Elliot-Yafet mechanism, which is dominant in group IV materials. We discuss the influence of different intravalley and intervalley phonon interactions in the spin relaxation process during the spin transport. Our findings are in good agreement with those obtained by using different theoretical approaches. Moreover, our Monte Carlo predictions, in ranges of temperature and field amplitude yet unexplored, can guide future experimental studies towards a more effective design of room-temperature silicon based spintronic-devices

    Analysis of the 2001 lava flow eruption of Mt. Etna from 3D mapping

    No full text
    The 2001 Etna eruption was characterized by a complex temporal evolution with the opening of seven eruptive fissures, each feeding different lava flows. This work describes a method adopted to obtain the three-dimensional geometry of the whole lava flow field and for the reconstruction, based on topographic data, of the temporal evolution of the largest lava flow emitted from a vent located at 2100 m a.s.l. Preeruption and posteruption Digital Elevation Models (DEM) were extracted from vector contour maps. Comparison of the two DEMs and analysis of posteruption orthophotos allowed us to estimate flow area, thickness, and bulk volume. Additionally, the two-dimensional temporal evolution of the 2100 flow was precisely reconstructed by means of maps compiled during the eruption. These data, together with estimates of flow thickness, allowed us to evaluate emitted lava volumes and in turn the average volumetric flow rates The analysis performed in this paper provided, a total lava bulk volume of 40.1 106 m3 for the whole lava flow field, most of which emitted from the 2100 vent (21.4 106 m3). The derived effusion rate trend shows an initial period of waxing flow followed by a longer period of waning flow. This is in agreement not only with the few available effusion rate measurements performed during the eruption, but also with the theoretical model of Wadge (1981) for the temporal variation in discharge during the tapping of a pressurized source
    corecore