
 

 

 

 
 

Tesi di Dottorato 

Noise-Induced Effects on electron 

transport in Silicon Structures 

Effetti Indotti dal Rumore sul 

trasporto elettronico in Strutture di 

Silicio 
 
 
 
 
Tutor:  

Prof.ssa Dominique Persano Adorno                                          

                  
 
 
 
             Dottoranda:  

            Dott. Ing. Maria Antonietta Lodato 
 
 
Coordinatore:  

Prof. Bernardo Spagnolo 

 

 
SSD: Fis03 

 

 

Universita` degli Studi di Palermo - Dipartimento di Fisica e Chimica 

Corso di DOTTORATO DI RICERCA INTERNAZIONALE in FISICA APPLICATA 
XXV CICLO - 2014 



	
   	
   ii	
  

 



	
   	
   iii	
  

 

Contents 

Introduction .......................................................................................................... 1 

Basic Semiconductor Physics ........................................................................... 7 

1.1 Structure and Energy Band of Silicon [59] ......................................... 7 

1.2  Electron Dynamics [65] ......................................................................... 11 

1.2.1 Carrier Confinement in Heterostructures ........................................... 13 

1.3  Boltzmann's Transport Equation [67, 74] ......................................... 16 

1.4  Monte Carlo Transport Calculation [1] ............................................. 18 

1.4.1  Single-Particle Monte Carlo Simulation ............................................ 18 

1.4.2 Scattering Process ............................................................................... 22 

1.4.3 Velocity Calculation .............................................................................. 24 

1.5  Ensemble Monte Carlo .......................................................................... 25 

1.6 Energy band structure, scattering mechanisms and physical 
parameters used in our simulations ......................................................... 27 

Semiconductor Noise ........................................................................................ 31 

2.1  General Formulation of Noise ............................................................. 31 

2.2  Classification of Intrinsic Noise .......................................................... 33 

2.2.1 Low-frequency noise sources ................................................................ 33 

2.2.2  White noise sources ............................................................................. 34 

2.2.3  Quantum Noise .................................................................................... 35 

2.3  External noise source ............................................................................ 36 

2.3.1  Gaussian correlated source of noise .................................................... 36 

2.3.2 Random Telegraph noise ..................................................................... 37 

2.4  Semiconductor noise calculation in the presence of a fluctuating 
electric field .................................................................................................... 38 

2.4.1 Analytical Theory of Noise suppression .............................................. 39 

External Noise Effects in Silicon Mos Inversion Layer ........................... 40 



	
   	
   iv	
  

3.1 MOS modeling ........................................................................................ 40 

3.2 Results and discussion [88] ................................................................. 45 

Hot-Electron Noise Features in Silicon Crystals operating under 
Periodic or Fluctuating Electric Fields ....................................................... 53 

4.1 Noise features ......................................................................................... 53 

4.1.1 Static electric field ............................................................................... 54 

4.1.2 Oscillating electric field ...................................................................... 55 

4.2 The noise-induced effects: numerical results and discussion .... 58 

Monte Carlo Simulation of Spin Relaxation of Conduction Electrons in 
Silicon ................................................................................................................... 65 

5.1 Spin relaxation dynamics .................................................................... 66 

5.2 Results and discussion [104] ................................................................. 68 

5.2 Future prospects .................................................................................... 71 

Conclusions ......................................................................................................... 73 

Bibliography ....................................................................................................... 79 

Appendix A .......................................................................................................... 91 

A.1 List of Pubblications .............................................................................. 91 

A.2 International conferences ..................................................................... 91 

  



	
   	
   v	
  

     Commonly Used Abbreviations 

 

Brillouin Zone: BZ 

Density Of States: DOS 

Very-Large-Scale Integration: VLSI 

Stochastic Resonance: SR 

Noise Enhanced Stability: NES 

Resonant Activation: RA 

Integrated Spectral Density: ISD 

Monte Carlo: MC 

MetalOxide Semiconductor: MOS 

Density Of States: DOS 

Molecular Beam Epitaxy: MBE 

Metalorganic Vapour Phase Epitaxy: MOCVD 

Quasi-Two-Dimensional Electron Gas: 2DEG 

Metal Oxide Semiconductor Field Effect Transistor: MOSFET 

Bulk Semiconductor: 3DEG 

Boltzmann Transport Equation: BTE 

Single-particle Monte Carlo: SMC 

Ensemble Monte Carlo: EMC 

Ornstein-Uhlenbeck: OU 

Dichotomous Noise: DM 

Elliot-Yafet: EY 

Dyakonov-Perel: DP 

Acoustic phonon: AC  

Optical phonon: OP  

 



	
   	
   1	
  

Introduction 

The study of charge transport in semiconductors is of fundamental importance, 

both from the point of view of basic physics, and for its application to electronic 

devices. On the one hand, the analysis of transport phenomena throws light on 

electronic interactions in crystals, band structure, lifetimes, impact ionization, 

etc. On the other hand, the applied aspect of the problem is even more 

important, since modern microelectronics, whose influence in all human 

activities seems to be ceaselessly growing, heavily depends on a sophisticated 

knowledge of many aspects of charge transport in semiconductors [1]. Starting 

in the early 1950s, soon after the invention of transistors, it was recognized 

that electric field strengths so high as to be outside of the linear-response 

region where Ohm's law holds were encountered in semiconductors [2]. The 

field of nonlinear transport (the hot-electron problem) entered a period of rapid 

development, and increasing numbers of researchers devoted their efforts to 

improving scientific knowledge on this subject. Furthermore, in the process of 

studying these high-field problems, new phenomena were discovered [for 

example, the Gunn effect (1963)] and, based on these discoveries, new devices 

were designed (such as transit-time devices) which, in turn, required new and 

deeper investigation. Thus one of the most interesting cases of positive 

feedback between science and technology in this century emerged. The 

subsequent tendency towards the miniaturization of devices, which has led to 

modern very-large-scale integration (VLSI) technology, has further enhanced 

the importance of high-field transport, since reducing the dimensions of devices 

has led to high-field strengths well outside the Ohmic response region for any 

reasonable voltage signal. 
Charge transport is in general a tough problem, from both the mathematical 

and physical points of view. In fact, the integro-differential equation (the 

Boltzmann equation) that describes the problem does not offer simple (or even 
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complicated) analytical solutions except in a very small number of cases, and 

these cases are not usually applicable to real systems. Furthermore, since 

transport quantities are derived from the averages over many physical 

processes, whose relative importance is not known a priori, the formulation of 

reliable microscopic models for the physical system under investigation is 

difficult. When one moves from linear to nonlinear response conditions, the 

difficulties become even greater: the analytical solution of the Boltznann 

transport equation without linearization with respect to the external force is a 

formidable mathematical problem, which has resisted many attacks in the last 

few decades. In order to get any results, it is necessary to perform such drastic 

approximations that it is no longer clear whether the features of interest in the 

results are due to the microscopic model or to mathematical approximations.  

Monte Carlo is a statistical numerical method used for solving mathematical 

problems; as such, it was developed well before its application to transport 

problems, and has been applied to a number of scientific fields [3]. In the case 

of charge transport, however, the statistical numerical approach to the solution 

of the Boltzmann equation proves to be a direct simulation of the dynamics of 

charge carriers inside the crystal, so that, while the solution to the equations is 

being worked out, any  physical information required can easily be extracted. 

This use of the Monte Carlo makes it similar to an experimental technique; the 

simulated experiment can in fact be compared with an analytically formulated 

theory [1].  

The presence of noise in semiconductor materials is generally considered a 

disturbance, since strong fluctuations affect performance and reliability of 

semiconductor-based devices. The existence of fluctuations, for example, can 

limit the lifetime of the information stored in a memory cell, it bothers the 

opening (or closure) of random logic gates and it causes the enlargement of the 

distribution of arrival times of signals on transmission lines. In order to fully 

understand the complex scenario of the nonlinear phenomena involved in the 

devices response, several studies have investigated hot-electron transport 

dynamics in bulk and semiconductor structures, by analysing the electronic 

noise in systems driven by external static or oscillating electric fields [4]-[16]. 

Recently, noise-induced complex phenomena in nonlinear systems have 
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increasingly been investigated, with a focus on cooperative effects between the 

noise and the intrinsic interactions of the system [17–37]. Previous studies 

have shown that, under specific conditions, an external noise can constructively 

interact with an intrinsically nonlinear system, characterized by the presence 

of intrinsic noise, giving rise to positive effects [17]-[24] such as stochastic 

resonance (SR) [25]-[28], resonant activation (RA) [29, 31] and noise enhanced 

stability (NES) [32]-[36]. In particular, the possibility of suppressing the 

intrinsic noise in n-type GaAs and Si bulk, driven by a static electric field, with 

the addition of a Gaussian correlated noise source, has been theoretically 

investigated [37]. Detailed studies of diffusion noise in low-doped GaAs bulk, 

subjected to a driving periodic electric field containing time-correlated 

fluctuations, have revealed the possibility of a suppression of electronic noise 

[34, 35]. Under specific conditions, the intrinsic noise in n-type GaAs crystals 

can	
  also be reduced by adding a two-level random telegraph noise source to the 

driving high-frequency oscillating electric field [36]. In refs. [38, 39], a way to 

improve the ultra-fast magnetization dynamics of magnetic spin systems by 

including random fields has been discussed. In semiconductor quantum wells 

and wires, Glazov et al. have demonstrated that the randomness in spin-orbit 

coupling is inevitable and can be attributed to both the electron-electron 

dynamic collisions and the static fluctuations in the density of dopant ions [40, 

41]. Furthermore, they pointed out the possibility of using fluctuating random 

Rashba spin-orbit interaction for the generation of spin currents [42]. Monte 

Carlo simulations have also shown that random spatial variation of the Rashba 

electric field along the length of a quantum wire makes the spatial spin 

relaxation characteristics random, nonmonotonic and chaotic [43].  

The process of spin relaxation in III-V semiconductors structures has been 

widely investigated in recent years [44-48]. Research along this line has been 

motivated by the possibility of developing electronic devices that perform logic 

operations, communication and storage, within the same material technology. 

However, to use of spin polarization as an information carrier, the 

disadvantage that each initial non-equilibrium orientation decays over time 

during transport	
  must be faced. Hence, to open the way to the implementation 

of spin-based devices, the features of spin relaxation at relatively high 
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temperatures, together with the influence of transport conditions, should first 

be fully understood and interpreted in experiment-related terms. Previous 

studies of the electron spin relaxation process in GaAs bulks, at nitrogen 

temperature, have shown that a random contribution added to the static 

electric field can affect the spin decoherence length [49, 50]. In particular, it 

has been found that the effect on spin depolarization length is maximum for 

values of the noise correlation time comparable with the characteristic time of 

the spin relaxation process, and that, depending on the amplitude of the 

applied electric field, the external fluctuations can have opposite effects [49]. 

Recently, electrical injection of spin polarization in n-type and p-type silicon up 

to room-temperature have been experimentally carried out [51-53], but 

theoretical research is still incomplete and a comprehensive investigation into 

the influence of transport conditions on the spin depolarization process in 

silicon structures, in a wide range of values of temperature and amplitude of 

external fields, is still missing.  

The aims of this thesis are: 

1. the investigation of the effects of the addition of an external correlated 

source of noise on the carrier velocity fluctuations in silicon semiconductor 

crystals and lower dimensional structures.  

In particular:  

ü Characterization of bulk covalent Si semiconductors 

ü Research extension to 2D structures (Si inversion layer). 

2. the development of a comprehensive theoretical framework concerning the 

influence of transport conditions on the spin depolarization process in 

silicon structures, by estimating both the spin lifetimes and the 

depolarization lengths as a function of the values of lattice temperature, 

electric field amplitude and doping density.  

The first part of the thesis is devoted to introduce some background knowledge 

of the concept of noise and to investigate the effects of the addition of an 

external correlated source of noise on the carrier velocity fluctuations in quasi-

two-dimensional silicon semiconductor structures, operating at different 

temperatures and under different static conditions. In our modelling of the 

quasi-two-dimensional electron gas, the potential profile, perpendicular to the 
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MOS structure, is assumed to follow the triangular potential approximation. 

The carrier intrinsic noise is obtained by computing the velocity fluctuation 

correlation function and its spectral density [54-55]. The modifications caused 

by the addition of an external source of correlated noise are investigated by 

analysing the noise integrated spectral density (ISD), which coincides with the 

variance of the electron velocity fluctuations, as a function of the characteristic 

parameters of the added fluctuations. In order to elucidate the effects of the 

correlated noise source on the intrinsic noise properties, we have performed 

100 different realizations and evaluated both average values and error bars for 

the calculated integrated spectral densities.  

In the second part of the thesis we study the hot-carrier noise in low-doped n-

type Si crystals operating under a periodic electric field with different 

frequencies and  the noise-induced effects on electron transport dynamics. In 

the latter case, the system is driven by a high-frequency periodic electric field, 

in the presence of two different kinds of external fluctuations: a Gaussian 

correlated or a Random Telegraph noise source. In order to elucidate the effects 

of the correlated noise source on the intrinsic noise properties, we have 

performed 200 different realizations for the calculated integrated spectral 

densities. The results are discussed and compared with those obtained in the 

absence of the exsternal source of noise. 

The last investigation presented in this thesis   show the results of the spin 

dynamics in n-type Si crystals obtained by using a semiclassical Monte Carlo 

(MC) approach to simulate both the electron transport and the spin dynamics. 

Spin relaxation is taken into account through the Elliot-Yafet mechanism [56, 

57], which is dominant in group IV materials. Despite our MC code does not 

take into account the scattering of electrons with g-phonons, the interactions 

with the impurities and uses approximated relations for the spin-flip rates, we 

found a good agreement with the analytical theories in absence of applied 

electric fields. 

 Our validated MC algorithm provides the experimental researchers with an 

estimate of spin lifetimes of drifting electrons in n-type Si crystals, at different 

temperatures and under different electron transport conditions. 
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Chapter 1  

Basic Semiconductor Physics 
 

In the first part of this chapter, we present a short summary of the main 

physical properties of semiconductors and we give basic information on the 

carrier dynamics in bulk semiconductors [58]-[61]. In the second part, we do 

the same for the Monte Carlo (MC) approach, used to study the transport 

properties in semiconductor structures. This method is widely used for 

modelling charge carrier transport in semiconductor structures and modern 

devices. Due to its flexibility, this approach can easily take into account many 

scattering mechanisms, specific device design, material properties and 

boundary conditions in the simulation (for more details see Ref. [62]-[64]. 

 

1.1 Structure and Energy Band of Silicon 

[59] 

Commonly, Silicon (Si) crystallizes in a diamond structure on a face-centered 

cubic (f.c.c.) lattice, with a lattice constant of ao=5.43 Å. The basis of the 

diamond structure consists of two atoms with coordinates (0,0,0) and ao/4 

(1,1,1) as shoun in  Fig.1.1.  

The Brillouin zone (BZ), i.e. the primitive cell in the reciprocal-space lattice, 

which is a body-centered cubic (b.c.c.) lattice, together with important reference 

points and directions within it, is shown in Fig. 1.2. 

Electrons in a semiconductor crystal move in a periodic crystal potential, which 

consists of the potential due to the atomic nuclei and of that due to the 
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electrons themselves. Therefore, when we study the electron transport in a 

crystal, we have to deal with an extremely complicated many-body problem. 

 

 
Figure 1.1 Diamond crystal structure of Si [59]  

 
Figure.1.2 Brillouin zone of the f.c.c. lattice [59] 

However, if we pay attention to the motion of an electron in the crystal and 

assume that the effect of the atomic nuclei and the remaining electrons on the 

selected electron can be approximated by a given  potential V(r), the many-body 

problem can be reduces to the problem of a single electron V(r) is periodic with 

the same periodicity of the lattice. This property is mathematically expressed 

as 
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𝑉 𝒓+ 𝑙𝒂+𝑚𝒃+ 𝑛𝒄 = 𝑉(𝒓)                                  (1.1) 

where a, b, and c are the primitive basis vectors, and l, m, and n are integers. 

To determine the electronic states for a periodic potential V(r), we have to solve 

the Schrodinger equation 

−
ℏ!

2𝑚!
∇! + 𝑉 𝒓 𝜓 𝒓 = 𝐸𝜓 𝒓  

(1.2) 

where ψ(r) is the eigenfunction to be determined, E is the energy eigenvalue, 

m0  is the electron mass in free space, ℏ  is Planck's constant divided by 2π, and 

∇!is the Laplacian operator. According to the Bloch theorem, the solutions for a 

perfectly periodic potential have the following form: 

𝜓 𝒓 = 𝑒!𝒌∙𝒓𝑢!𝒌 𝒓                                              (1.3) 

where k is the wave vector that runs over reciprocal space, s is a band index 

and 𝑢!𝒌 𝒓  is the periodic function of the direct lattice (Bloch amplitude). Both 

𝑢!𝒌 𝒓  and the corresponding energy-band spectrum 𝐸! 𝒌  are periodic in k, 

which allows one to restrict consideration within the BZ.  

The bands are arranged so that there are energy regions for which no states 

given by (1.3) exist. Such forbidden regions are called energy gaps or band gaps 

and result from the interaction of valence electrons with the ion cores of 

crystals.  

 
Figure 1.3: Band gap (a) in GaAs and (b) in Si 
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In semiconductor science the term band gap is accepted for the energy distance 

between the maximum of 𝐸! 𝒌  for the highest filled (valence) band and the 

minimum of 𝐸! 𝒌  for the lowest empty (conduction) band (denoted by 𝐸!) (Fig. 

1.3).  The band gap is called direct if the aforementioned maximum and 

minimum occur at the same point of the BZ, e.g. Γ, , and indirect if they occur 

at different points of the BZ, e.g. Γ and X. 

Si is an indirect-band-gap semiconductor with 𝐸! = 1.17  𝑒𝑉  at 4.2K. The 

calculated energy-band structure, that is the curves of 𝐸! 𝒌  for selected 

directions in the BZ, is shown in Fig. 1.4a. The conduction-band minimum lies 

at six equivalent points Δ on the Γ-X lines (Fig. 1.4a).  

  
Figure. 1.4: Electronic band structure of Si: (a) Energy dispersion curves near the fundamental 

gap. (b) The constant-energy of the conduction band [59] 

 

At the bottom  of eah valley the band spectrum is quadratic in k, e.g. for the 

valley 1  0  0  

𝐸! 𝒌 = 𝐸!! +
ℏ! 𝑘! − 𝑘! !

2𝑚!
+
ℏ! 𝑘!! + 𝑘!!

!

2𝑚!
                                                            (1.4) 

where 𝑘! ≈ 1.72𝜋/𝑎!, 𝑚! and 𝑚! are the longitudinal and transverse effective 

masses. The spectra for the other five valleys are obtained from (1.4) by 90° 

rotations and inversions 𝑘! → −𝑘!. Though the constant-energy surface for (1.4) 

is an ellipsoid (Fig. 1.4b), the density of states (DOS) proves to be the same as 

for an isotropic parabolic spectrum with an effective mass 
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𝑚!" = 6! !𝑚!
! !𝑚!

! !                                                                                                              (1.5) 

which is called the DOS effective mass. 

Equation 1.4 holds at 𝐸! − 𝐸!! < 0.15𝑒𝑉, but at larger energies the ellipsoids 

strongly warp , especially near the X point; the change of the spectrum with 

energy is mostly due to the increasing 𝑚!, while 𝑚! weakly increases  [62]. 

The valence-band maximum is at the Γ  point (k=0) where the Bloch-wave state 

𝑢!! 𝒓  has the full symmetry of an atomic p-orbital, being six-fold degenerate in 

the nonrelativistic limit. 

 

1.2  Electron Dynamics [65] 

As discussed in the previous section, electrons in a crystal behave just like 

electrons in free space, except for a change in their mass. This fact suggests 

that the motion of electrons in a crystal may be described by the classical 

equations of motion. This idea is acceptable if the potential energy felt by 

electrons varies slowly compared to the crystal potential, and quantum 

mechanical effects such as reflection and tunnelling can therefore be ignored. 

The classical motion of an electron is described by the equations of motion 

based on the total energy (or Hamiltonian), H = Ek + U, where Ek is the kinetic 

energy and U is the potential energy. The motion of an electron in a conduction 

band can also be described if we properly choose the Hamiltonian as [65] 

𝐻 = 𝐸𝒌 + 𝐸! 𝒓                                                                                                               (1.6)                                             

where Ek represents the kinetic energy in terms of the crystal momentum and 

the effective mass, and Ec(r) is the conduction band minimum given by 

𝐸! 𝒓 = constant− 𝜒 𝒓 − 𝑒𝑉 𝒓                                                                                 (1.7) 

where 𝜒(r) is the electron affinity, e is the magnitude of the electronic charge, 

V(r) is the electrostatic potential, and the constant is related to the reference of 

electron energy. If the material is compositionally uniform, 𝜒(r) is constant and 

can be eliminated from (1.7).  
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Figure 1.5 shows the case of an electron moving in a slowly varying potential 

without scattering. In the case of hole motion in the valence band, Ec(r) in (1.6) 

has to be replaced by the energy of the valence band maxima, Ev(r). 

The equations of motion can easily be constructed by using an analogy with 

Hamilton's equations of motion. 

 

 
Figure 1.5:  Motion of an electron moving in a slowly varying potential Ec without scattering 

Ek is the   kinetic energy of the electron [65]. 

Thus, we have  

𝑑𝐤
𝑑𝑡 = −

1
ℏ∇𝐻                                                                                                            (1.8a) 

𝑑𝐫
𝑑𝑡 =

1
ℏ∇!𝐻                                                                                                          (1.8b)   

where ∇ and ∇! are del operators with respect to position vector r and wave 

vector k, respectively. For spherical and ellipsoidal bands, equation (1.8b) gives 

the following simple results for the group velocity: 

𝒗 =
ℏ𝒌
𝑚∗                                                                                                                           (1.9) 

and     

𝒗 =
ℏ𝒌𝒍
𝑚!
∗ +

ℏ𝒌𝒕
𝑚!
∗                                                                                                               (1.10) 

which have similar forms of free electron momentum divided by mass. For the 

non-parabolic band, the group velocity calculated by (1.8b) is 

𝒗 =
ℏ𝒌
𝑚∗

1
1+ 4𝛼𝛾 𝑘

                                                                                                (1.11) 
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1.2.1 Carrier Confinement in Heterostructures 

With the use of modern epitaxial growth techniques (MBE, MOCVD, etc.), the 

alloy composition can be varied on an atomic scale, and very sophisticated layer 

structures consisting of several barriers and wells can be constructed. 

Electrons in the quantum well are termed quasi-two-dimensional electron gas 

(2DEG) because of the confined electron motion in the well. The consideration 

of 2DEG is very important, since this quantum confinement is observed in 

modern heterostructure devices as well as in the conventional silicon 

MOSFETs [66]. 

We assume that the electron motion is confined in the z-direction but it is free 

in the x-y plane. This electron motion can be analyzed by the three-dimensional 

Schrödinger equation: 

−
ℏ!

2𝑚!
∇!𝜓 𝒓 + 𝐸! 𝒓 𝜓 𝒓 = 𝐸𝜓 𝒓                                                                   (1.12) 

The first step to solving (1.12) for 2DEG is to apply the separation of variables  

which reduce the problem lower dimensions. Because carriers are free to move 

in the x-y plane, it is very natural to use plane wave solutions in the x-y 

direction; thus, 

Ψ 𝒓 = 𝐶𝜓 𝑧 ∙ 𝑒!!!!𝑒!!!!                                   (1.13) 

where C is the normalization constant. Substituting (1.13) into  (1.12), we find 

an equation for 𝜓 𝑧 :  

−
ℏ!

2𝑚!

𝜕!𝜓 𝑧
𝜕𝑧! + 𝐸! 𝑧 𝜓 𝑧 = 𝐸!𝜓 𝑧                                                                   (1.14) 

where  

𝐸! = 𝐸 − E∥ = 𝐸 −
ℏ!

2𝑚∗ 𝑘!! + 𝑘!!                                                                     (1.15) 
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is the energy associated with confinement in the z-direction and 𝐸∥  is the 

kinetic energy associated with the motion parallel to the x-y plane. To find 𝜓 𝑧  

and En by solving the wave equation, the potential energy Ec(z) has to be 

specified. 

If the quantum well is square and infinitely deep, then 𝜓 𝑧  is given by the 

infinite number of solutions: 

𝜓 𝑧 =
2
𝑊 𝑠𝑖𝑛𝑘!𝑧                                                                                                      (1.16) 

where 2 𝑊  is the normalization constant and kz is restricted to discrete 

values given by 

𝑘! =
𝑛𝜋
𝑊                                                                                                                               (1.17) 

where n is a positive integer and W is the width of the well. The corresponding 

energy due to confinement in the z-direction is also restricted to 

𝐸! =
ℏ!𝑘!!

2𝑚∗ =
ℏ!

2𝑚∗
𝑛𝜋
𝑊

!
                                                                                          (1.18) 

According to (1.18), 𝐸   =   𝐸!   +   𝐸∥; therefore, the electron energy can increase in 

each subband. En thus denotes the bottom energy of each subband. En increases 

with the decrease of the width of the well. 

The density of states for the nth subband (per given spin and per unit energy 

range) is independent of E and is given by 

𝑁! 𝐸 =
𝑚∗

2𝜋ℏ!𝑊                                                                                                             (1.19) 

If W is eliminated from (1.19) by substituting (1.18), we then have an 

alternative form for the density of states for the nth subband: 

𝑁! 𝐸 =
2𝑚∗ ! !

4𝜋!ℏ! 𝐸! − 𝐸!!!                       for    𝐸 > 𝐸!                          (1.20) 
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where E1 is the energy level of the ground-state subband and E0 is defined as 

the bottom energy of the well; thus, E0 = 0. Equation (1.20) can also be applied 

for a quantum well with an arbitrary shape if the subband energies are known. 

Equation (1.20) clearly shows how the density of states for 2DEG is related to 

that of bulk electrons (3DEG): 

𝑁 𝐸! =
2𝑚∗ ! !

4𝜋!ℏ! 𝐸!                                                                                                 (1.21) 

The density of states for 2DEG and 3DEG are shown in Fig. 1.6, which shows 

that the total density of states for 2DEG coincides with that for 3DEG when E= 

En. 

 
Figure 1.6 Density of states for 2DEG as a function of electron energy. The thick solid line 

shows the total density of states of 2DEG, and the thin solid curve shows that of 3DEG, Ni(E) is 

the density of states of the ith subband and Ei is the subband energy level [65]. 

 

In many practical cases, the SchrÖdinger equation (1.14) cannot be solved 

analytically. Approximate methods, such as a variational method and the 

Wentzel-Kramers-Brillourin (WKB) method, are used to evaluate 2DEG states. 

Fig. 1.7 shows the case of the presence of a constant electric field over an 

infinite potential barrier, which elestically reflects electrons. This is known as 

triangular potential well 
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Figure 1.7: Triangleular potential well. F (the slope of the line) shows the magnitude of the 

electric field. 

 

1.3  Boltzmann's Transport Equation [67, 74] 

In the description of an electronic device, like a transistor or a diode, the usual 

approach is to consider the electronic current as a fluid, but in the reality the 

current consists of single particles free to move through the device. The motion 

of the particles (electrons) consists of a sequence of free flights ending in 

collision events, so the trajectories of these particles are random [65]. The 

standard description of charge transport in semiconductors is given by the 

Boltzmann Transport Equation (BTE) [67]. The BTE is an integral-differential 

kinetic equation, which	
  also correctly describes the charge transport in devices 

where the sizes are lower than De Broglie’s wavelength. In general it is not 

possible to neglect the quantum effects [68]. The study of charge transport 

properties in a semiconductor in the presence of an external field is not simple, 

especially when the field is very strong. In fact, in these cases, the BTE does 

not have an analytical solution. To solve this problem, many assumptions can 

be made, as in the drift-diffusion model and the hydrodynamic model, where 

the particles are treated as a fluid. However, the validity of these models is 

limited and they cannot be applied to most modern devices. 

In spite of this, there is an indirect way to solve the problem. Because the 

electronic current consists of single particles with their own transport 

sequence, a device can be correctly described by following the motion of each 

particle. The free flight	
  time and the collision mechanism that causes the end of 



	
   	
   17	
  

free flight are distributed in a stochastic way. By generating pseudorandom 

numbers with a suitable distribution, it is possible to calculate the motion of 

each particle and simulate the characteristics of a device [69]-[70]. This 

method, called Monte Carlo, represents a continuous solution in real space and 

in the time of Maxwell and Boltzmann’s equations, and it is very useful to 

study the response of a device, both in the presence of static fields or  non-

stationary fields [71]-[72]. 

The BTE is an equation of motion for the probability distribution function in 

the 6-dimensional phase space of position and (crystal) momentum 

𝜕𝑓 𝐫,𝐤, 𝑡
𝜕𝑡 +

1
ℏ∇𝐤𝐸 𝐤 ∇!𝑓 𝐫,𝐤, 𝑡 +

𝑒𝐅
ℏ ∇𝐤𝑓 𝐫,𝐤, 𝑡 =

𝜕𝑓 𝐫,𝐤, 𝑡
𝜕𝑡

!"##
,        (1.22) 

where 𝑓 𝐫,𝐤, 𝑡   is the one-particle distribution function. The right hand side is 

the rate of change of the distribution function due to randomizing collisions, 

and it is an integral over the in-scattering and the out-scattering terms in 

momentum (wavevector) space. Once 𝑓 𝐫,𝐤, 𝑡   is known, physical observables, 

such as average velocity or current, are found through averages over f 

distribution [67]. Equation (1.22) is semi-classical in the sense that particles 

are treated as having distinct position and momentum in violation of the 

quantum uncertainty relations, but their dynamics and scattering processes 

are quantum-mechanically treated through the electronic band structure and 

the use of the time dependent perturbation theory [65, 73]. 

The BTE is still an approximation of the underlying many body Liouville 

equation from a classical point of view, and of the Liouville-von Neumann 

equation for the density matrix in a quantum-mechanical framework [74]. The 

main approximations of the BTE are the assumption of instantaneous 

scattering processes in space and time, the Markov nature of scattering 

processes (i.e. that they are uncorrelated with the previous scattering events), 

and the neglecting of multi-particle correlations (i.e. that the system may be 

characterized by a single particle distribution function). In semi-classical 

simulation, some of these assumptions are relaxed through the use of 

molecular dynamics techniques (in the context of device simulations). 

 



	
   	
   18	
  

1.4  Monte Carlo Transport Calculation [1] 

The Monte Carlo (MC) technique is based on the generation of a random walk 

in order to simulate the stochastic motion of the particle subject to collision 

processes in some mediums. This process of random walk generation may be 

used to evaluate integral equations, and is connected to the general random 

sampling technique used in the evaluation of multi-dimensional integrals. 

The MC algorithm explicitly consists of generating random free flight times for 

each particle, choosing the type of scattering that occurrs at the end of the free 

flight, changing the final energy and momentum of the particle after 

scattering, and then repeating the procedure for the next free flight. The 

sampling of particle motion at various times throughout the simulation allows 

the statistical estimation of physically interesting quantities such as the single 

particle distribution function, the average drift velocity in the presence of an 

applied electric field, the average energy of the particle, etc. By simulating an 

ensemble of particles that are representative of the physical system of interest, 

the non-stationary time-dependent evolution of the electron and hole 

distributions under the influence of a time-dependent driving force can be 

simulated. 

 

1.4.1  Single-Particle Monte Carlo Simulation 

In general, the analysis of the carrier transport in a semiconductor is a many-

body problem with a large number of carriers mutually interacting; hence it is 

a very difficult task. However, when the many-body system can be considered 

an ensemble of independent carriers, it becomes possible to use an approximate 

method that simulates this ensemble of carriers by monitoring the history of a 

single carrier undergoing many scattering events. 

The Single-particle Monte Carlo (SMC) method is straightforward and can be 

carried out without the need to assume the shape of the distribution function. 

It consists of simulating the motion of a single carrier in the momentum space 

by stochastically selecting the duration of the carrier free flights and the 



	
   	
   19	
  

scattering events, making a mapping between the probability density of the 

given microscopic process and a uniform distribution of random numbers. 

 

Free Flight Generation [65] 

In the MC method, in order to simulate the motion of a particle with a random 

walk process, the probability density P(t) is required, in which P(t)dt is the 

joint probability that a particle arrives at time t without scattering after the 

previous collision at t = 0, and then undergoes a collision in a time interval dt. 

The probability of scattering in the time interval dt may be written as 

Γ[𝐤(𝑡)]𝑑𝑡, where Γ[𝐤(𝑡)] is the scattering rate of an electron or hole having 

wavevector k. The scattering rate, Γ  [𝐤  (𝑡)] , represents the sum of the 

contributions from each individual scattering mechanism, which is usually 

calculated using perturbation theory. The implicit dependence of Γ 𝐤 𝑡  on 

time reflects the change in k due to acceleration by internal and external fields. 

For electrons subject to time independent electric and magnetic fields, the time 

evolution of k between collisions is described as  

𝐤 𝑡 = 𝐤   0 −
𝒆 𝐅+ 𝐯×𝐁 𝑡

ℏ                                                                                     (1.23) 

where F is the electric field, v is the electron velocity, and B is the magnetic 

field. In terms of the scattering rate, Γ[𝐤(𝑡)], the probability that a particle has 

not undergone a collision after a time t is given by exp(− Γ[𝐤(𝑡′)]𝑑𝑡′!
! ). Thus, 

the probability of scattering in the time interval dt after a free flight of time t 

may be written as the joint probability 

 𝑃 𝑡 𝑑𝑡 = Γ 𝐤 𝑡 exp − Γ 𝐤 𝑡! 𝑑𝑡!!
! 𝑑𝑡.                                                  (1.24) 

Random flight times may be generated according to the probability density P(t) 

by using, for example, a pseudo-random number generator, which generates 

random numbers uniformly distributed  in the range [0,1]. Using a direct 

method, random flight times can be generated according to 
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𝑟 = 𝑃 𝑡 𝑑𝑡
!!

!
,                                                                                                              (1.25) 

where r is a uniformly distributed random number and tr is the desired free 

flight time. Integrating (1.25) with P(t) given by (1.24) yields 

𝑟 = 1− exp − Γ 𝐤 𝑡! 𝑑𝑡!
!

!
.                                                                        (1.26) 

Since 1 − r is statistically the same as r, (1.26) can be simplified to  

− ln 𝑟 = Γ 𝐤 𝑡! 𝑑𝑡!
!!

!
.                                                                                                        (1.27) 

Equation (1.27) is the fundamental equation used to generate the random free 

flight time after each scattering event, resulting in a random walk process 

related to the underlying particle distribution function. If there is no external 

driving field leading to a change in k between scattering events, the time 

dependence vanishes, and the integral is trivially evaluated. In the general 

case where this simplification is not possible, it is a good expedient to introduce 

the self-scattering method [65], in which a fictitious scattering mechanism is 

introduced, whose rate always adjusts itself in such a way that the total (self-

scattering plus real scattering) rate is a constant in time. 

Γ = Γ 𝐤 𝑡! + Γ!"#$ 𝐤 𝑡! ,                                                                                          (1.28) 

where Γself [k(t′)] is the self-scattering rate. The self-scattering mechanism is 

defined in such a way that the final state before and after scattering is 

identical. Hence, when it is selected as the terminating scattering mechanism, 

it has no effect on the free flight trajectory of a particle, but allows the 

simplification of Eq. (1.27) so that the free flight is given by 

𝑡! = −
1
Γ ln 𝑟 .                                                                                                                    (1.29) 

The constant total rate (including self-scattering) Γ is chosen a priori so that it 

is larger than the maximum scattering encountered during the simulation 

interval. In the simplest case, a single value is chosen at the beginning of the 
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entire simulation (constant Γ method), checking to ensure that the real rate 

during the simulation never exceeds this value. 

 

Final State After Scattering  

The algorithm described above determines the random free flight time during 

which the particle dynamics are semi-classically treated according to Eq. (1.23). 

For the scattering process, we need the type of scattering (i.e. impurity, 

acoustic phonon, photon emission, etc.) which terminates the free flight, and 

the final energy and momentum of the particle after scattering. The type of 

scattering that terminates the free flight is chosen using a uniform random 

number between 0 and Γ, which, used as pointer, allows	
  the final energy and 

momentum of the particle to be selected from among the relative total 

scattering rates of all the processes, including self-scattering.  

Γ =Γ!"#$ 𝑛,𝐤 +Γ! 𝑛,𝐤 +Γ! 𝑛,𝐤 +⋯+Γ! 𝑛,𝐤 ,                                              (1.30) 

where n is the band index of the particle (or subband in the case of reduced 

dimensionality systems), k is the wavevector at the end of the free-flight and N 

is the number of different types of scattering mechanisms. Once the type of 

scattering that terminates the free flight has been selected, the final energy 

and momentum (as well as band or subband) of the particle due to this type of 

scattering must be selected. For this selection, the scattering rate, Γj[n, k;m,k′], 
of the jth scattering mechanism is necessary, where n and m are the initial and 

final band (subband) indices, and k and k′ are the particle wavevectors before 

and after scattering. Defining a spherical coordinate system around the initial 

wavevector k, the final wavevector k′ is specified by |k′| (which depends on 

conservation of energy) as well as the azimuthal and polar angles, φ and θ 
around k. Typically the scattering rate Γj[n, k; m, k′] only depends on the angle 

θ between k and k′. Therefore, φ may be chosen using a uniform random 

number between 0 and 2π (i.e. 2πr), while θ is chosen according to the cross-

section for scattering arising from Γj[n,k; m,k′]. If the probability for scattering 

into a certain angle P(θ)dθ is integrable, then random angles satisfying this 

probability density can be generated by the direct method, through the 
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inversion of Eq. (1.25). Otherwise, a rejection technique can be used to select 

random angles according to P(θ). 

 

1.4.2 Scattering Process  

In the scattering calculation, we first select a scattering mechanism by which 

an electron is to be scattered, and then identify the electron state after 

scattering.  

Fig. 1.8 lists the scattering mechanisms one should consider in a typical MC 

simulation. They are roughly divided into scattering due to crystal defects, 

which is primarily elastic in nature, lattice scattering between electrons (holes) 

and lattice vibrations or phonons, which are inelastic. Phonon scattering 

involves different modes of vibration, either acoustic or optical, as well as both 

transverse and longitudinal modes. Carriers may either emit or absorb quanta 

of energy from the lattice, in the form of phonons, in individual scattering 

events. The designation of inter- versus intra-valley scattering comes from the 

multi-valley band structure model, and refers to whether the initial and final 

states are in the same valley or in different valleys. 

 
Figure 1.8: Scattering mechanisms in a typical semiconductor.[66] 

 

The selection of a scattering mechanism (n) can be made by using functions 



	
   	
   23	
  

Λn(Ek) defined as 

Λ! 𝐸𝐤 =
𝑊! 𝐸𝐤!

!!!

Γ                 for    𝑛 = 1, 2,… ,𝑁                                                    (1.31) 

which are the successive summations of the scattering rates normalized with Γ.   

Γ  is identical to the parameter defined by (1.28), and N is the total number of 

scattering mechanisms. A scattering mechanism for an electron with energy Ek 

is selected by generating a random number r2 lying between 0 and 1, and 

comparing it to Λn(Ek); thus, the n-th scattering mechanism is chosen if the 

condition given by 

               Λ!!! 𝐸𝐤 < 𝑟! < Λ!!! 𝐸𝐤               𝑛 = 1, 2,… ,𝑁                                                    (1.32) 

is satisfied.  

Having determined the scattering mechanism, we next determine the wave 

vector k' after scattering. The magnitude of k' is known by the energy 

conservation. The direction of k' needs to be determined in terms of its 

components in a Cartesian coordinate 𝑘!! , 𝑘!! , 𝑘!!  according to the laboratory 

frame (xL, yL, zL) chosen for the simulated device. If the scattering is isotropic 

(i.e., if the scattered electron has the same probability of being in any direction 

after scattering), the components 𝑘!! , 𝑘!!  and 𝑘!!  can be found by considering that 

the probability density p(f',q')df'dq' is proportional to the number of available 

states on a sphere of radius k', where f' and  q' are the azimuthal and polar 

angles of k' in relation to 𝑘!! . p(f',q') equals 𝑠𝑖𝑛𝜃′ , since any f' is equally 

probable. Therefore, f'  and q' can be determined by a couple of uniform random 

numbers, r3 and r4, between 0 and 1.                                           

𝜙! = 2𝜋𝑟!           

cos𝜃′ = 1− 2𝑟!                                                                                                                    (1.33) 

For f' and  q' given by (1.39), the components of the laboratory frame 𝑘!! , 𝑘!! , 𝑘!!  

are readily obtained as         

𝑘!! = 𝑘!𝑠𝑖𝑛𝜃!𝑐𝑜𝑠𝜙! 
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𝑘!! = 𝑘!𝑠𝑖𝑛𝜃!𝑠𝑖𝑛𝜙! 

𝑘!! = 𝑘!𝑐𝑜𝑠𝜃!                                                                                                                                (1.34)    

These expressions are only valid in the case of isotropic scattering. 

For anisotropic scattering processes, such as impurity scattering and polar 

optical phonon scattering, determination of θ and φ, the polar and azimuthal 

angles of k' in relation to the initial wave vector k, is more complicated [see ref. 

65]. 

 To calculate the scattering rates in a quasi-two-dimensional electron gas the 

matrix elements have to be properly calculated for the subband wave functions. 

 

1.4.3 Velocity Calculation 

If we accumulate the flight time (or visiting time) of an electron in each volume 

element of k-space, we are able to figure out the distribution function by which 

the mean carrier velocity and energy can be calculated. This procedure requires 

a large amount of memory to accumulate the data in c-space. However, it is not 

necessary to do this, because the mean values of velocity and energy can be 

calculated directly by monitoring each electron flight and then taking an 

average over all the flights. 

The instantaneous carrier velocity is given by 

𝒗 =
1
ℏ∇𝐤𝐸𝐤                                                                                                                            (1.35) 

Therefore, the mean carrier velocity during flight time t can be written as 

𝒗 𝐫 =
1
ℏ
∆𝐸𝐤
∆𝐤                                                                                                                         (1.36)  

where ΔEk and Δk are small increments of the carrier energy and wave vector 

during t, respectively. The increment of electron wave vector under a constant 

electric field is given by  

∆𝐤 = −
𝑒𝐅
ℏ 𝜏                                                                                                                        (1.37)  

Substituting (1.37) with (1.36), we have 
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𝒗 𝐫 = −
∆𝐸𝐤
𝑒𝐅𝜏                                                                                                                     (1.38) 

Making use of the mean carrier velocity during r given by (1.38), the mean 

carrier velocity during the total simulation time T is obtained as 

𝒗 𝐓 =
1
𝑇 𝒗 𝐫𝝉 = −

1
𝑒𝐅𝜏 ∆𝐸𝐤   

                            = −
1
𝑒𝐅𝜏 𝐸𝐟 − 𝐸𝐢                                                           (1.39) 

where Ei, is the carrier energy at the start of the electron flight and Ef, is the 

energy at the end of the flight. The summation has to be made for all free 

flights. Equation (1.39) shows that we need to accumulate the energy 

increment during each free flight. The same reasoning leads to mean carrier 

energy  𝐸 !   being derived as 

𝐸 ! =
1
𝑇 𝐸 !𝜏                                                                                                             (1.40) 

where 𝐸 ! is given, with a good approximation, by 

𝐸 ! =
𝐸! + 𝐸!
2                                                                                                                 (1.41) 

 

1.5  Ensemble Monte Carlo 

The algorithm described in the previous section can be used to track a single 

particle over many scattering events, in order to simulate the steady-state 

behaviour of a system. Transport transient or spin relaxation simulations 

require the use of a synchronous ensemble of particles in which the algorithm 

described above is repeated for each particle in the ensemble that represents 

the system of interest, until the simulation is completed. 

The conventional Ensemble Monte Carlo (EMC) scheme used for electronic 

devices describes transport of classical representative particles, called 

superparticles. Usually, each simulated particle represents a group of real 
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electrons or holes with similar characteristics. In simulation, each particle is 

simulated as an SMC procedure described	
  above.   

Fig. 1.9 illustrates an EMC simulation in which at fixed time-step ∆t, the 

motion of all the carriers in the system is synchronized. The yellow symbols 

illustrate random, instantaneous, scattering events, which may or may not 

occur during one time-step. In this picture, τ indicates the random flight time of 

an individual electron. Basically, each carrier is simulated only up to the end of 

the time-step, and then the next particle in the ensemble is dealt with. Within 

each time-step, the motion of each particle of the ensemble is simulated 

independently of the other particles.  

 
Figure 1.9: Ensemble Monte Carlo simulation in which, the motion of particles is syn- 

chronized at each time-step ∆t. The yellow symbols represent scattering events. 

 

Nonlinear effects such as carrier-carrier interactions are then updated at each 

scattering event, as discussed in more detail below. The non-stationary one-

particle distribution function and related quantities such as drift velocity, 

valley or subband population, etc., are then taken as averages over the 

ensemble at fixed time-steps throughout the simulation. 

For example, the drift velocity in the presence of the field is given by the 

ensemble average of the i-component of the velocity at the nth time step as 

𝑣! 𝑛∆𝑡 ≅
1
𝑁 𝑣!

! 𝑛∆𝑡
!

!!!

,                                                                                          (1.42) 

 where N is the number of simulated particles and j labels the particles in the 

ensemble. This equation represents an estimator of the true velocity, which has 

a standard error given by 
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𝑠 =
𝜎
𝑁
,                                                                                                                                (1.43) 

 where σ2 is the variance which may be estimated from  

𝜎! ≅
𝑁

𝑁 − 1
1
𝑁 𝑣!

! !
!

!!!

− 𝑣!! .                                                                                (1.44) 

Similarly, the distribution functions for the carriers, electrons and holes, may 

be tabulated by counting their number in cells of k-space. From Eq. (1.43), we 

see that the error in estimated average quantities decreases as the square root 

of the number of particles in the ensemble, implying the simulation of many 

particles. Typical ensemble sizes for good statistics are in the range of 104-105 

particles.  

 

1.6 Energy band structure, scattering 

mechanisms and physical parameters used 

in our simulations 

The transport of the electrons in the Si bulk is simulated by using a single-

particle Monte Carlo algorithm, while spin relaxation is calculated by means of 

an ensemble Monte Carlo code. 

The conduction band of silicon is represented by six equivalent X valleys along 

the〈100〉directions, approximated as ellipsoids with rotational symmetry, 

and two effective longitudinal mL and transverse mT masses. Because the 

energy gap between the X and L valley is large (1.05 eV), higher valleys and 

impact ionization are not taken into account, since for the employed electric 

field, the electrons do not reach sufficient kinetic energies for these transitions. 

The code includes both the intervalley and intravalley scattering of electrons in 

multiple energy valleys. In particular, the scattering by acoustic phonons is 

taken into account, employing a deformation potential. Ionized impurity 

scattering is included under the Brooks–Herring approximation and the 
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intervalley scattering is accounted for by considering six types of optical 

phonon, three concerning transitions between perpendicular valleys (f-type) 

and three between parallel valleys (g-type). The scattering probabilities are 

calculated by using the Fermi Golden Rule and the scattering events are 

considered instantaneous.  

In the silicon MOS inversion layer, the simplification and assumption made in 

the Monte Carlo procedure are as follows: 

• The six equivalent X-valleys are assumed to be spherical and parabolic; 

therefore, the subband energy levels are the same for all equivalent 

valleys.  

• The potential profile perpendicular to the MOS inversion layer is 

assumed to be a triangle (triangle potential approximation. 

• The scattering processes takes into account the scattering mechanism 

with intra- and inter- subbands, and non-polar optical and acoustic 

phonons. This choice is made to avoid numerical integration in the 

determination of the electron states after scattering. 

• The 2DEG is assumed to be non-degenerate 

For all the numerical simulations discussed in this thesis scattering 

probabilities are assumed to be field-independent; accordingly, the influence of 

the external fields is only indirect through the field-modified electron velocities. 

At this stage, we neglect the electron–electron interactions and consider 

electrons as being independent particles. We have also used the parameters of 

the silicon shown in Table 1.1. 
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Table 1.1:_ Set of n-type Si parameters used in the calculations [75]  

 

All results were obtained in Si with a free electron concentration 1013 cm–3 

(nondegenerate low-doped n-type). We assume that all donors are ionized and 

that the free electron concentration is equal to the doping concentration. 
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Chapter 2  

Semiconductor Noise 
 
Noise in semiconductor devices has a significant impact on circuit’s 

performances. This is even more important in today’s low-voltage, high-

performance, mixed-signal and RF designs. The capability to measure and 

characterize semiconductor device noise is a fundamental requirement for 

design. Noise characterization is also important to monitor the quality of 

semiconductor processes.  

Previous studies have shown that, under specific conditions, an external noise 

can constructively interact with an intrinsically nonlinear system, 

characterized by the presence of intrinsic noise, giving rise to positive effects 

[22]-[24] such as stochastic resonance (SR) [25]-[28], resonant activation (RA) 

[29, 30] and noise enhanced stability (NES) [32]-[36]. In particular, the 

possibility of suppressing the intrinsic noise in n-type GaAs and Si bulk, driven 

by a static electric field, with the addition of a Gaussian correlated noise 

source, has been theoretically investigated [37]. This section is devoted to the 

introducing some background knowledge about the concept of noise. 

 

2.1  General Formulation of Noise 

In semiconductor devices the current conduction is the result of the flow of 

discrete charged particles, the electrons. While from a macroscopic point of 

view the electrons are moving at an average rate in, response to the conditions 
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within the device, they are fluctuating in their velocity and position due to 

scattering events, recombination, or trapping and de-trapping of carriers [77].  

The motion of electrons in the presence of an electric field is characterized by 

an average velocity, which depends on the external parameters of the system, 

such as the amplitude of the applied field and its frequency. The fluctuations of 

electron velocity around its mean value correspond to the intrinsic noise of the 

system.  

If the applied field is static, the correlation function Cδvδv(τ) of the velocity 

fluctuations can	
  usually be calculated as: 

𝐶!!!!(𝜏)   =    ⟨𝛿𝑣(𝑡)𝛿𝑣(𝑡  +   𝜏)⟩   =    ⟨𝑣(𝑡)𝑣(𝑡  +   𝜏)⟩   −    ⟨𝑣(𝑡)⟩!,                                  (2.1)  

in which τ is the correlation time and the average is done over a sequence of a 

long enough time interval [0;𝑇]. 
For systems operating under cyclostationary conditions, the correlation 

function Cδvδv(t,τ) of the velocity fluctuations δv(t) = v(t)−⟨v(t)⟩ can be 

calculated [55] as         

𝐶!!!! 𝑡, 𝜏 = 𝑣 𝑡 −
𝜏
2 𝑣 𝑡 +

𝜏
2 − 𝑣 𝑡 −

𝜏
2 𝑣 𝑡 +

𝜏
2                                       (2.2) 

in which τ is the correlation time and the average is calculated over a sequence 

of equivalent time instants 𝑡   =   𝑠  +   𝑚𝑇 , with s belonging to the time interval 

[0,𝑇] (𝑇 is the field period) and m is an integer [55]. This two-time symmetric 

correlation function eliminates any regular contribution and describes only the 

fluctuating part of v(t). By averaging over the whole set of values of t within the 

period 𝑇, the velocity autocorrelation function becomes 

𝐶!!!! 𝜏 =
1
𝑇 𝐶!!!! 𝑡, 𝜏 𝑑𝑡

!

!
                                                                                            (2.3) 

According to the Wiener–Kintchine theorem, the spectral density can be 

calculated as the Fourier transform of Cδvδv(τ).  
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2.2  Classification of Intrinsic Noise 

There are several sources causing fluctuations in time-varying currents: 

thermal noise, 1/f noise, generation-recombination noise and quantum noise. In 

terms of frequency behaviour, distinct trends can be identified.  

Some noise is constant over some frequency ranges, whereas other noise 

diverges as frequency decreases.  

Fig. 2.1 shows the different types of noise that may be observed at a contact of 

a semiconductor device. 

 
Figure 2.1: Types of noise  

 

2.2.1 Low-frequency noise sources 

The Generation-recombination (GR) and 1/f noise components in Figure 2.1 are 

referred to as low-frequency noise because their spectral density rolls off with 

increasing frequency. The (GR) noise is due to fluctuations in the number of 

free carriers inside a two-terminal sample associated with random transitions 

of charge carriers between states in different energy bands. Accordingly, it 

represents a typical noise source in semiconductor materials, where carrier 

concentration can vary over many orders of magnitude. Typical examples of 
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transitions are between conduction band and localized levels in the energy gap, 

conduction and valence bands, etc. [79] 

Therefore, GR noise is inherently due to fluctuations in the carrier number, 

usually maintaining the charge neutrality of the total sample. The GR noise 

has a Lorentzian spectrum of the form [80] 

𝑆! =
𝐵𝜏

1+ 2𝜋𝑓𝜏 !                                                                                                                   (2.4) 

where τ is a time-constant and B has a dependence on the current flowing 

through the device.  

The 1/f noise has several alternative names, for example, flicker noise, pink 

noise or telegraph noise.  The 1/ f noise component is typically characterized by 

a current spectral density [81]  

𝑆! =
𝐾!𝐼!!
𝑓                                                                                                                                 (2.5) 

and is associated with a superposition of Lorentzian spectra or current-density 

fluctuations [82] with a microscopic spectral density of  

𝑆! =
𝛼!𝐽!

𝑓!
                                                                                                                                (2.6) 

where αH is a phenomenological parameter based on mobility fluctuations, n is 

the number of carriers, and 𝐽 is the current density.  

 

 2.2.2  White noise sources 

Two common noise quantities considered in semiconductor devices are thermal 

and shot noise, shown as diffusion noise in Figure 2.1. These noise sources are 

also referred to as being white because they have equal power at every 

frequency up into the THz region. Thermal noise for a resistor is characterized 

by  

  𝑆! =
4𝑘𝑇
𝑅                                                                                                                                         (2.7)  
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where Si is the current spectral density, k is Boltzmann’s constant, T is the 

temperature of the device, and R is the resistance in ohms. For a diode, shot 

noise is characterized as 

𝑆! = 2𝑞𝐼                                                                                                                                      (2.8) 

where q is the charge of an electron and I is the current flowing through the 

device. While these noise sources appear to be different, with Equation 2.7 

having no bias dependence and Equation 2.8 having a current dependence, 

they result from the same microscopic fluctuation. The spectral density of this 

fluctuation [77] is 

𝑆 = 4𝑞!𝐷!𝛼
𝜕𝑦𝜕𝑧
𝜕𝑥                                                                                                                   (2.9) 

where α = n, p is the electron and hole density respectively, and Dα is the 

diffusivity. 

 

2.2.3  Quantum Noise 

Quantum noise is the frequency-dependent excess noise. It is proportional to 

the frequency, becoming the dominant fluctuations at high frequencies (see Fig. 

2.2).  

 
Figure 2.2: Spectrum of dominant noise sources in frequency domain 
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To describe quantum noise, correlations between electrons originating from 

Coulomb interactions and the Pauli exclusion principle should be considered 

similar to shot noise. Furthermore, I, i.e. quantum noise, includes vacuum 

fluctuations. The finite frequency current spectral density is written with 

energy-independent transmission probabilities 𝑇! 

𝑆! 𝑓 = 𝑇! 1− 𝑇!
2𝑒!

ℏ 𝑒𝑉 + ℎ𝑓 coth
𝑒𝑉 + ℎ𝑓
2𝑘!𝑇

+ 𝑒𝑉 − ℎ𝑓 coth
𝑒𝑉 − ℎ𝑓
2𝑘!𝑇

!

!

+ 𝑇!!
2𝑒!

ℎ 2ℎ𝑓coth
ℎ𝑓
2𝑘!𝑇

!

!

.                                                                                                                        (2.10) 

It is reduced to a simple form 𝑆! = 2ℎ𝑓𝐺 in the limit where hf≫eV, kBT with  

G= 2𝑒!/ℎ 𝑇!. Equation (2.10) is a complete and general form of the current 

spectral density including shot noise, thermal noise and quantum noise. 

 

2.3  External noise source 

Recently, an increasing interest has been directed towards the constructive 

aspects of noise in the dynamic response of non-linear systems. Several studies 

have investigated hot-electron transport dynamics in bulk and semiconductor 

structures by analysing the electronic noise in systems driven by external 

static or oscillating electric fields [4]-[21] containing time-correlated 

fluctuations [34, 35], or a two-level random telegraph noise source [36] 

 

2.3.1  Gaussian correlated source of noise 

In the case of Gaussian correlated noise, the random component of the electric 

field η(t) is modelled as an Ornstein-Uhlenbeck (OU) process, which obeys the 

stochastic differential equation [83] 

𝑑𝜂 𝑡
𝑑𝑡 = −

𝜂 𝑡
𝜏!

+
2𝐷
𝜏!

𝜉 𝑡                                                                                             (2.11) 
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where τD and D are, respectively, the correlation time and the intensity of the 

noise described by the OU process which has an autocorrelation function 

expressed by  

⟨𝜂(𝑡)𝜂(𝑡′)⟩   =   𝐷  𝑒𝑥𝑝(−
|𝑡  −   𝑡′|
𝜏!

).                                                                                (2.12) 

ξ(t) is a Gaussian white noise with zero mean < ξ(t) >= 0, and autocorrelation 

function  

⟨𝜉(𝑡)𝜉(𝑡′)⟩   =   𝛿(𝑡  −   𝑡′).                                                                                              (2.13)  

Within the framework of Ito’s calculus, the general solution of equation (2.12) 

leads to the following complete expression for the stochastic evolution of the 

amplitude of the electric field 

𝐹 𝑡 = 𝐹! + 𝜂 0 𝑒!! !! +
2𝐷
𝜏!

𝑒!
!!!!
!! 𝑑𝑊 𝑡′

!

!
                                                  (2.14)  

 where the initial condition is η(0) = 0, and W (t) is the Wiener process [83].  In 

a practical system, η(t) could be generated by a RC circuit driven by a source of 

Gaussian white noise, with correlation time τD = (RC)−1 (see equation (2.11)). 

The Gaussian white noise can be generated by the Zener breakdown 

phenomenon in a diode, in an inversely polarized base-collector junction of a 

BJT, or by amplifying the thermal noise in a resistor [84]. The correlation time 

τD is tunable by using a diode (varicap) with a voltage-dependent variable 

capacitance; the noise intensity D can be chosen, for example, by suitably 

amplifying the noise produced through the Zener stochastic process. 

 

2.3.2  Random Telegraph noise 

In the case of random telegraph or dichotomous noise (DM), η(t) is generated by 

a random process taking only discrete values and stochastically switching 

between these values. Let us consider a symmetric dichotomous Markovian 

stochastic process with only two values [85, 90] η(t) ∈ {−Δ, Δ}. Thus, we have a 
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zero mean ⟨η(t)⟩ = 0, and correlation function  

⟨𝜂(𝑡)𝜂(𝑡′)⟩   =   Δ!  𝑒𝑥𝑝(−
|𝑡  −   𝑡′|
𝜏!

).                                                                                (2.15) 

where τD is the correlation time of the noise. It is related to the inverse of the 

mean frequency of transition from ±Δ to ∓Δ, respectively.  

In our runs, we choose η(0) = X as the initial condition, where X is a random 

variable which takes the values −∆ and ∆ with equal probability (p = 1/2). We 

only consider fluctuations of equal height, in such a way that this external 

noise can easily be generated in practical systems, and tuning effects can be 

more controllable. A dichotomous Markovian noise can be realized, for 

example, by means of a cheap and simple home-made noise generator, based on 

the generation of a pseudo-random sequence by a linear-feedback shift register 

SR2. 

 

2.4  Semiconductor noise calculation in the 

presence of a fluctuating electric field 

The noise-induced changes of intrinsic noise properties are investigated by a 

statistical analysis of the autocorrelation function of the velocity fluctuations 

and its mean spectral density. Although the single excitation is not periodic	
  due 

to the presence of the random component, our process exhibits cyclostationarity 

since its average statistical properties vary cyclically with time, i.e.  

⟨𝐹(𝑡  +   𝑚𝑇  )⟩   =    ⟨𝐹(𝑡)⟩  

                    ⟨𝑣(𝑡 +𝑚𝑇)⟩ = ⟨ 𝑣(𝑡) ,                                                                                            (2.16  )          

where the brackets ⟨...⟩ mean the average over an ensemble of different 

realizations of F(t) and v(t) histories.  

In the computations of the autocorrelation function we have considered 103 

possible initial values of s and a total number of equivalent time instants 

m≅106. 
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2.4.1 Analytical Theory of Noise suppression 

The average electron velocity is modified by the presence of an external source 

of noise [37]. In particular, assuming that the characteristic time scale of the 

intrinsic fluctuations is much smaller than any other characteristic time of the 

system enables the correlation function to be approximated by a delta function 

as  

𝐶(𝜏,𝐸) = 𝑆(𝐸)𝛿(𝜏),                                                                                                        (2.17)  

 where S(E) is the low frequency value of the spectral density of velocity 

fluctuations. Under the assumptions that the time τD is long enough for the 

system to follow the variations of E(t) and that 𝛿𝐸!  is small, the main result 

of the theory can be summarized in the following two formulas: 

𝑣 𝐸! ! = 𝑣 𝐸! +
1
2
𝑑! 𝑣 𝐸!
𝑑𝐸! 𝛿𝐸!                                                                       (2.18) 

and  

𝑆! 𝐸! = 𝑆 𝐸! + 2𝜏!
𝑑 𝑣 𝐸!
𝑑𝐸

!

+
1
2
𝑑!𝑆 𝐸!
𝑑𝐸! 𝛿𝐸!                                           (2.19) 

where the subscript 0 means averaging in the presence of external noise. The 

former relation indicates that the average velocity is modified by the presence 

of the external noise, but the most interesting result is given by the latter 

equation which demonstrates that the intrinsic noise of the system can be 

reduced if the term  d2S(E0)/dE2 is negative and the characteristic time of the 

fluctuations of the electric field τD is small	
  enough. 
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Chapter 3  

External Noise Effects in Silicon 

Mos Inversion Layer 

 

In this chapter we investigate the effect of the addition of an external source of 

correlated noise on the electron transport in a  silicon MOS inversion layer, 

driven by a static electric field. In our modelling of the quasi-two-dimensional 

electron gas, the potential profile, perpendicular to the MOS structure, is 

assumed to follow the triangular potential approximation. We calculate the 

changes in both the autocorrelation function and the spectral density of the 

velocity fluctuations, for different values of noise amplitude and correlation 

time.  

 

3.1 MOS modeling  

Quantum-confined semiconductor-based devices, such as silicon MOS, are the 

cornerstone of current electronics. In these structures, spatial confinement 

leads to the formation of discrete low-dimensional subbands. Energy levels are 

quantized in each direction of confinement, while the momentum remains a 

good (continuous) quantum number in the unconfined directions [66]. For a 
given energy in the conduction band, the allowed electron wavevectors trace out a 
surface in k-space. In the effective-mass approximation for silicon, these constant 
energy surfaces can be visualized as six equivalent ellipsoids of revolution (Fig. 
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3.1), whose major and minor axes are inversely proportional to their effective 
masses. A collection of such ellipsoids for different energies is referred to as a 
valley. 

 
Figure 3.1. (a) Constant-energy surfaces for the conduction-band of silicon, showing six 
conduction-band valleys in the 100  direction of momentum space. (b) Potential diagram for 
inversion of p-type silicon. 

The band minima, corresponding to the centers of the ellipsoids, are 85% of the 

way to the Brillouin-zone boundaries. The long axis of an ellipsoid corresponds 

to the longitudinal effective mass of the electrons in silicon, ml = 0.916 m0, 

while the short axes correspond to the transverse effective mass, mt = 0.190 m0 

(m0 is the free-electron mass). For a 100  surface, the Δ! -band has the 

longitudinal mass (ml) perpendicular to the semiconductor interface and the Δ!-
band has the transverse mass (mt) perpendicular to the interface. Since larger 

mass leads to a smaller kinetic term in the Schrödinger equation, the unprimed 

lader of subbands (as it is usually called), corresponding to the Δ!-band, has the 

lowest ground state energy. The degeneracy of the unprimed ladder of 

subbands for a 100  surface is 2. For the same reason, the ground state of the 

primed ladder of subbands corresponding to the Δ!-band is higher than the 

lowest subband of the unprimed ladder of subbands. The degeneracy of the 
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primed ladder of subbands for a 100   surface is 4.  

Here, the silicon inversion layer is modeled as a triangular potential well, i.e. 

𝐸!(𝑧) = 𝑒𝐸𝑧, z ≥ 0 [66, 87]. Then the subband wavefunctions ψn(z) satisfy the 

one-dimensional Schr𝑜dinger equation 

−
ℏ!

2𝑚!

𝜕!𝜓 𝑧
𝜕𝑧! + 𝑒𝐸𝑧𝜓 𝑧 = 𝐸!𝜓 𝑧                                                                                 (3.1) 

where 𝐸! is the subband energy. 

We have determined both energy levels and wave functions by using the 

variational method based on the minimization of the energy eigenvalue of the 

following approximate wavefunctions [65]: 

𝜓! 𝑧 = 𝑘!𝑧  exp −
𝑐!𝑧
2                                                                                                                                                      

𝜓! 𝑧 = 𝑘! 𝑧 + 𝑎!𝑧!   exp −
𝑐!𝑧
2                                                                                                                  

𝜓! 𝑧 = 𝑘! 𝑧 + 𝑎!𝑧! + 𝑏!𝑧!   exp −
𝑐!𝑧
2                                                               (3.2) 

where an, bn, cn and kn (with n = 1, 2, 3) are the variational constants to be 

determined;, and kn is the normalization constant. 

The requirement in the variational method is the minimization of the energy 

eigenvalue: 

𝐸! = 𝜓!∗𝐻𝜓!
!
! 𝑑𝑧 → 𝑚𝑖𝑛                                        (3.3) 

The conditions for the normalization and orthogonality of the wave functions 

are also given as 

𝛿!,! = 𝜓!∗ 𝜓!
!
! 𝑑𝑧                                                (3.4)  

where  𝛿𝑚,! is the Kronecher delta. 

Substituting  3.2 into 3.3, we have the following energy eigenvalue: 

𝐸! = 𝐾!!
ℏ!

2𝑚∗
1
2𝑐!

+
𝑎!
𝑐!!
+
2𝑎!!

𝑐!!
+
12𝑎!𝑏!
𝑐!!

+
36𝑏!!

𝑐!!
+ 
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                                      +  𝑒𝐹
6
𝑐!!
+
84𝑎!
𝑐!!

+
120 𝑎!! + 2𝑏!

𝑐!!
+
1440𝑎!𝑏!

𝑐!!
+
5040𝑏!!

𝑐!!
                              (  3.5) 

the normalization constant can also be found from (3.4) 

𝐾! =
1

2
𝑐!!
+ 12𝑎!𝑐!!

+ 24 𝑎!
! + 2𝑏!
𝑐!!

+ 240𝑎!𝑏!𝑐!!
+ 720𝑏!

!

𝑐!!

                                              (3.6) 

where we have to set n=1 and  𝑎! = 𝑏! = 0 for the ground state subband, n=2  

and  𝑏! = 0  for the second subband, and n=3 for the third subband, 

respectively, in (3.5) and (3.6). For example, we have the following simple form 

for the energy level and the normalization constant for the ground state 

subband: 

𝐸! =
ℏ!

2𝑚∗
𝑐!
2

!
+
3𝑒𝐸
𝑐!

                                                                                                              (3.7) 

𝐾! =
𝑐!!

2                                                                                                                                     (3.8) 

The value of  𝑐!, which minimizes 𝐸!, is readily found as 

c! =
12m∗eE
ℏ!   

!
                                                                                                                        (3.9) 

The orthogonality of the second subband wave function to that of the ground 

state results in the following relations between the coefficients: 

𝑎! = −
1
6 𝑐! + 𝑐!                                                                                                           (3.10) 

Substituting (3.10) with (3.5) to eliminate 𝑎! from the energy eigenvalue 𝐸!, it 
can be expressed as a function of only 𝑐!, and we can find the value of 𝑐!, which 

minimizes 𝐸!,numerically. 
The ortogonality of the ground state and second subbands gives the following 

relations: 
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𝑎! = −
1
3
𝐴! 𝐵 + 5𝑎! − 𝐵! 𝐵 + 3𝑎!
𝐴 𝐵 + 5𝑎! − 𝐵 𝐵 + 4𝑎!

                                                                  (3.11) 

𝑏! =
𝐴𝐵
12

𝐴 𝐵 + 4𝑎! − 𝐵 𝐵 + 3𝑎!
𝐴 𝐵 + 5𝑎! − 𝐵 𝐵 + 4𝑎!

                                                                        (3.12) 

where 

A =
c! + c!
2 , B =

c! + c!
2                                                                                       (3.13) 

Substituting 3.12 into 3.5, the energy eigenvalues for the third subband can be 

expressed as a function of 𝑐!. We can numerically determine the value of 𝑐! 
that minimizes the energy level of the third subband. 

The Q2DEG is driven by a fluctuating electric field directed along the x-axis: 

E(t) = E + η(t)                                              (3.14) 

where E is the amplitude of the deterministic part and η(t) is the random term 

modelled by an Ornstein-Uhlenbeck (OU) stochastic process (see equation 

2.11).  

With the aim of finding the most favourable conditions for noise suppression in 

silicon Q2DEG, we have preliminarily calculated S0 at T=77K and T=300K.  

 
Figure 3.2: Spectral density of the velocity fluctuations at zero frequency (S0) as a function of 

the electric field calculated by the Monte Carlo simulation at temperature T =77K and T=300K 

in Q2DEG SiMOS. 
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In Fig. 3.2, at T=300K, we can see that S0 exhibits a maximum at zero field, 

thus implying a negative d2S(E0)/dE2 in the low field region, which is a 

necessary condition to obtain noise suppression. Furthermore, the spectral 

density S0 reaches a minimum at E = 10 kV/cm. At T=77K, S0 shows a negative 

d2S(E0)/dE2 in the low field region. 

  

3.2 Results and discussion [88] 

For the purpose of confirming the validity of the analytical theory in silicon 

Q2DEG, and investigating the role of τD in the suppression of noise, we	
  initially  

investigated the transport electron dynamics in the presence of a static electric 

field with an amplitude of E = 10 kV/cm. 

 
Figure 3.3: Spectral densities of the velocity fluctuations obtained for a static electric field E = 

10 kV/cm and the addition of a correlated source of noise, characterized by τD = 2 ps for three 

different values of noise intensity D. 

In order to elucidate the effects of the correlated noise source on the intrinsic 

noise properties, we performed 100 different realizations and evaluated both 

average values and error bars for the calculated integrated spectral densities. 
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Fig. 3.3 shows the spectral densities of the velocity fluctuations obtained by 

adding a source of correlated noise, characterized by τD=2 ps for three different 

values of noise amplitude D1/2 (namely D1/2 = 1, 2 and 4kV/cm).  

 
Figure 3.4: ISD of the velocity fluctuations obtained with a static electric field E = 10 kV/cm 

and the addition of a source of correlated noise with an amplitude of D1/2 = 2 kV/cm for different 

values of the noise characteristic time τD. The dashed line represents the ISD obtained in the 

absence of external noise. 

 

Fig. 3.4 shows the integral spectral density (ISD) of the velocity fluctuations 

obtained with E = 10 kV/cm and a source of correlated noise with D1/2 = 2 

kV/cm for different values of the noise characteristic time τD. In Fig. 3.3 (and 

Fig. 3.4) the error bars represent the maximum range of ISD variation. 

In accordance with the analytical theory, no possibility to suppress the 

intrinsic noise has been found, although the ISD decreases with the decreasing 

of the noise correlation time τD.  
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Figure 3.5: ISD of the velocity fluctuations as a function of: (a) the ratio between the noise 

amplitude D1/2 and the deterministic component of the electric field E, obtained for E = 4 kV/cm 

and τD = 10 ps; (b) the noise correlation time τD, for E = 4 kV/cm and D1/2 = 0.8 kV/cm. 

Subsequently, we investigated the transport electron dynamics in the silicon 

MOS inversion layer, driven by a static electric field with an amplitude of E=4 

kV/cm. This is because d2S(E0)/dE2 is negative for field strengths lower than 5 

kV/cm (see Fig.3.2).  

In Fig. 3.5a we show the ISD obtained with the addition of a source of 

correlated noise, with a characteristic time of τD = 10 ps, as a function of the 
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ratio between the noise amplitude D1/2 and the static electric field E.  

The fact that the ISD, i.e. the variance of the velocity fluctuations, remains 

almost constant over the whole range of noise amplitude	
   investigated, implies 

that if the noise is suppressed in a certain frequency range, it must be 

enhanced in another range in order to keep a constant value for the total power 

of the fluctuating signal. In this case, we obtain a noise redistribution, rather 

than a noise suppression. 

For E = 4 kV/cm and a correlated noise with amplitude D1/2 = 0.8 kV/cm (20% of 

the amplitude of the field), it remains almost constant in spite of the fact that 

the noise correlation time varies of about five order of magnitude. 

 
Figure 3.6: Spectral densities of velocity fluctuations obtained by a static electric field E= 1 

kV/cm with a temperature of T=300K and the addition of a correlated source of noise with τD= 

1ps and for two different values of the noise intensity D. 

Since the results obtained in the presence of a static electric field of more than 

2kV/cm showed no positive effects on the intrinsic noise of the system 

considered, we investigated the effect on the intrinsic noise caused by 

the addition of an external correlated noise source in a quasi-two-dimensional 

electron gas  (2DEG) in a Silicon MOS inversion layer, driven by a constant 
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electric field of low intensity (E=1kV/cm), for different lattice temperatures. 

Fig. 3.6 shows the spectral densities of the velocity fluctuations obtained by a 

static electric field E= 1 kV/cm with a temperature T=300K and the addition of 

a correlated source of noise with τD= 1ps, for two different values of the noise 

intensity D1/2 (namely D1/2 = 0.1 and 0.4kV/cm).  

 
Figure 3.7: Spectral densities of velocity fluctuations obtained by a static electric field E= 1 
kV/cm with a temperature of T=77K and the addition of a correlated source of noise with τD= 
1ps and τD= 5ps, for two different values of the noise intensity D. 

Fig. 3.7 shows the spectral densities of the velocity fluctuations obtained by a 
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static electric field E=1 kV/cm with a temperature of T=77K and the addition of 

a correlated source of noise with tD= 1ps and tD= 5ps, for two different values of 

the noise intensity D1/2 (namely D1/2 = 0.1 and 0.4kV/cm).  

The effects of external noise are noticed at T=77K, while at T=330K there is 

only a small decrease in the low frequency region (see fig.3.6). Furthermore, 

the presence of noise reduces the height of the peak around 400 GHz at T=77K, 

in a way that depends on each value of intensity and correlation time studied. 

The low-frequency effect, on the other hand, depends heavily on both D and τD 

(see Fig.3.7). 

The dependence of the intrinsic noise suppression effect on the amplitude and 

the correlation time of the external source of fluctuations have	
   also been 

investigated by studying the integrated spectral density (ISD), i.e. the total 

noise power.   

 
Figure 3.8: Integrated spectral density (ISD) obtained by a static electric field E=1kV/cm and 

the addition of a correlated source of noise with characteristic time of τD= 1ps and τD= 5ps for 

different values of the noise intensity D, at T=300 K and at T=77 K 

 

In Fig. 3.8 we show the ISD obtained with the addition of a source of correlated 

noise, with characteristic times of τD = 1 ps and τD = 5 ps, as a function of the 

ratio between the noise amplitude D1/2 and the static electric field E=1kV/cm, at 

T=300K and T=77K.  
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Figure 3.9: Integrated spectral density (ISD) obtained by a static electric field E=1kV/cm and 

the addition of a correlated source of noise with a noise intensity of D=0.1kV/cm for different 

values of the characteristic time, at T=300 K and at T=77 K 

 

Fig. 3.9 shows the integral spectral density (ISD) of the velocity fluctuations 

obtained with E = 1 kV/cm and a source of correlated noise with D1/2 = 1 kV/cm 

for different values of the noise characteristic time τD. The error bands (dotted 

lines) represent the maximum range of ISD in the absence of noise. 

The ISD show a nonmonotonic behaviour. We observed that the total noise 

power decreases by up to 2% of the value obtained in the absence of external 

noise, especially at T=77K for τD = 5ps (see fig3.9), but only for noise amplitude 

by up to 15% of the amplitude of the deterministic electric field (see fig. 3.8). 

 Furthermore, an interesting aspect of non-monotonic behaviour by the ISD 

with the noise correlation time has been found. Further studies are needed to 

learn more about the interplay between the scattering processes’ time scales 

and the noise correlation time in the possible suppression of the intrinsic noise. 
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Chapter 4  

Hot-Electron Noise Features in 

Silicon Crystals operating under 

Periodic or Fluctuating Electric 

Fields 
 

In this chapter, we initially focus on electron transport properties in n-silicon 

crystals embedded in high frequency alternating electric fields. The noise 

features of hot-carriers driven by the periodic electric field are compared with 

those obtained in the presence of a static field, with the aim of investigating 

the modifications of the electronic noise spectra induced by the frequency and 

the strength of the applied field. 

Later we investigate noise-induced effects on the electron transport dynamics 

in the presence of two different kinds of external fluctuations: a dichotomous 

Markovian noise and a Gaussian correlated noise.  

 

4.1 Noise features  

The transport of the electrons in the Si bulk is simulated by using a single-

particle Monte Carlo algorithm, which follows the standard procedure 
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described in chap.1. 

 The model for the conduction band of silicon and the parameters of the 

scattering mechanisms are the same as those described in chap.1.  
 

4.1.1 Static electric field 

Figure 4.1 illustrates the spectral density of electron velocity fluctuations as a 

function of the frequency, obtained by varying the amplitude of the static 

electric field E0 in the range 2–20 kV/cm, at two different lattice temperatures, 

namely T = 77 K (panel a) and T = 300 K (panel b). When the free carriers 

inside the semiconductor crystal are driven by a static electric field, the shape 

of the spectral density of electron velocity fluctuations very much depends on 

the strength of the field	
  applied. At T = 77 K, for field amplitudes equal to E0 = 

2 kV/cm and E0 = 5 kV/cm, the shape of the spectral density is characterized by 

significantly higher values in the low-frequency region, a characteristic peak at 

an intermediate frequency of ~200 and ~400 GHz respectively, and a rapid 

drop for higher frequencies. For field amplitudes equal to 10, 15, and 20 kV/cm, 

the spectra are characterized by lower values in the low-frequency region and a 

broad peak at a frequency of ~800 GHz. The peak, which could be viewed as a 

“natural” transition frequency of the system between different valleys, is found 

at a frequency that increases with the intensity of the applied field E0. 

 
Figure 4.1. Spectral density of electron velocity fluctuations obtained for different strengths of 

the static electric field E0 at two different lattice temperatures: (a) T = 77 K and (b) T = 300 K. 
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At T = 300 K (Fig. 4.1(b)), the spectral densities show a typical Lorentzian 

shape; the peaks are less pronounced and the enhancement at low frequencies 

is completely absent. 

The total noise power, i.e. the integrated spectral density (ISD), is shown in 

Fig. 4.2 as a function of the amplitude of the applied static field. For the two 

lattice temperatures, the ISD shows an almost linear increase with E0. 

 
Figure 4.2: ISD of electron velocity fluctuations as a function of the amplitude of the applied 

static field E0 at T = 77 K (black line) and T = 300 K (red line). 

It is interesting to note that since the slope of the curve at T = 300 K is lower 

than that at T = 77 K, for field values greater than ~12 kV/cm the ISD at T = 

300 K remains lower than the values computed at T = 77 K. 

 

4.1.2  Oscillating electric field 

In Fig. 4.3 we show the spectral density of electron velocity fluctuations 

obtained at T = 77 K, and field amplitude E in the range of 2 – 20 kV/cm at 

different frequencies, namely: (a) 100 GHz, (b) 200 GHz, (c) 500 GHz, and (d) 
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1THz.  

 
Figure 4.3: Spectral density of velocity fluctuations obtained in the presence of an external 

periodic electric field; T = 77 K and (a) f = 100 GHz, (b) f = 200 GHz, (c) f = 500 GHz, and (d) f = 

1 THz. 

 

For f=100 GHz, the spectra show the characteristic shape enriched by the 

presence of peaks at frequency f, and at its odd harmonics (up to the 11th for E 

= 20 kV/cm). In the low frequency range, the spectral density monotonically 

decreases with the increase in the electric field amplitude.  

At f = 200 GHz, the spectra obtained at E = 2 kV/cm and E = 5 kV/cm show a 

significant enhancement in the low-frequency region and a more pronounced 

peak at frequency ν = 200 GHz. For stronger field amplitudes, the spectral 

density assumes the diffusion shape	
  again. For f = 500 GHz and f=1THz, the 

peaks at the harmonic frequencies are not observed. Furthermore, an 

enhancement in the low-frequency region is found for E= 2 kV/cm, E = 5 kV/ cm 

at f = 500 GHz and for E = 10 kV/cm at f = 1 THz. 
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Figure 4.4: ISD of electron velocity fluctuations as a function of the frequency of the periodic 

field at different field amplitudes E. 

 
Figure 4.5: ISD of the electron velocity fluctuations as a function of the amplitude E of the 

periodic field at different values of frequency. 
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In Figs. 4.4 and 4.5 we show the ISD of the electron velocity fluctuations as a 

function of the frequency f of the driving electric field and as a function of the 

field amplitude E, respectively. The ISD obtained in the presence of an 

oscillating electric field is always lower than that computed in the static case 

for each amplitude of the applied field. It also monotonically decreases with the 

increase in the frequency of the driving field. For E = 2 kV/cm, it remains 

almost constant for frequencies of the periodic field in the range of 400 < f < 

1000 GHz (see Fig. 4.4). 

Furthermore, with the increase in the amplitude of the driving field, the ISDs 

up to f = 200 GHz show a linear increasing trend that remains close to the 

static one. Different increasing trends have been found in the case of f=500 

GHz and f=1 THz. The ISD obtained at f = 1 THz, for E = 20 kV/cm, is reduced 

to about half of the value obtained in the static field case. 

The noise spectra exhibit some peculiarities, which are very different from 

those obtained in the case of the static field. We noticed a significant reduction 

in the noise level for increasing frequencies of the driving field. This effect 

could be a consequence of the cooling of the distribution function, but further 

investigations are needed to clarify this result. 

 

4.2 The noise-induced effects: numerical 

results and discussion 

In this section we examine the noise-induced effects on the electron transport 

dynamics in low-doped n-type Si crystals operating under a high-frequency 

periodic electric field in the presence of two different kind of external 

fluctuations: a Gaussian correlated noise (see eq. 2.11) and a dichotomous 

Markovian noise (see eq.2.15)  

The effects caused by the addition of an external noise source are investigated 

by studying the modifications in the correlation function of the electron velocity 

fluctuations and in its spectral density. 

The spectral density of the electron velocity fluctuations has been studied by 

adopting a fluctuating periodic electric field with frequency f = 500 GHz.  
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The amplitude of this field has been chosen on the basis of a preliminary 

analysis of the variance of velocity fluctuations and the spectral density S0(E) 

at zero frequency, as a function of the amplitude of the oscillating field.  

                                a)                                                                             b) 

 
Figure 4.6: a) Spectral density of the velocity fluctuations at zero frequency (S0) as a function of 

the electric field calculated by the Monte Carlo simulation at temperature T =77K. b) Variance 

of velocity fluctuations as a function of the electric field calculated at f=500GhZ 

 

Following [6] and [9], the most favourable condition for obtaining a noise 

suppression effect in our system is atained when d2S0(E)/dE2 is negative and 

the variance of velocity fluctuations reaches a maximum.  

In figure 4.6, we can see which range of amplitudes of electric field verifies 

these conditions. We have chosen a driving electric field	
   accordingly, with 

amplitude E0 = 4 kV cm−1 and frequency f = 500 GHz.  

In figure 4.7 we plot the correlation function of single particle velocity 

fluctuations obtained in the presence of (a) an external correlated noise, and (b) 

a dichotomous Markovian noise with amplitude D1/2 = 0.4 kV/cm, for three 

different values of the noise correlation time tD. We can see a decrease for all 

three different values of tD.   

In the absence of external noise, the features described in section 4.2 

characterize the spectrum. 
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Figure 4.7 Correlation function of single particle velocity fluctuations obtained in the presence 

of (a) an external correlated noise, (b) a dichotomous Markovian noise, for three different 

values of the noise correlation time tD.  (E=4kV/cm T =77 K and f=500 GHz,  D1/2 = 0.4 kV/cm).  

In figure 4.8 we show how the spectral density of electron velocity fluctuations 

is modified by the presence of a) a correlated noise, and (b) a dichotomous 

Markovian noise.   
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The addition of an external source of fluctuations to the driving electric field 

changes the spectrum and, in particular, the height of the peak around 500 

GHz, in a way that depends on the correlation time. 

 
Figure 4.8: Spectral densities of single particle velocity fluctuations obtained in the presence of 

(a) an external correlated noise, (b) a dichotomous Markovian noise, for three different values 

of the noise correlation time tD.  (E=4kV/cm T =77 K and f=500 GHz,  D1/2 = 0.4 kV/cm).  
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The dependence of the intrinsic noise suppression effect on the amplitude and 

the correlation time of the external source of fluctuations has also been 

investigated by studying the integrated spectral density (ISD), i.e. the total 

noise power, as a function of the noise amplitude and the correlation time.   

 

 
Figure 4.9 Integrated spectral density (ISD) of the electron velocity fluctuations as a function of 

(a) the values of the correlated noise amplitude D1/2 (with a correlation time τD = 0.1T) and (b) 

the values of the correlation time of the external source of noise, with amplitude D1/2 = 0.4 

kV/cm .  
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Figure 4.10 Integrated spectral density (ISD) of the electron velocity fluctuations as a function 

of (a) the values of the dichotomous Markovian noise amplitude D1/2 (with a correlation time tD 

= 0.1T) and (b) the values of the correlation time of the external source of noise, with amplitude 

D1/2 = 0.4 kV/cm .  

 

In figures 4.9 and 4.10, we show a reduction of the ISD in the presence of 

external noise. In particular, in the case of the addition of a Gaussian 
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correlated component to the deterministic field, the ISD as a function of the 

noise amplitude shows a nonmonotonic behaviour.  

It can be observed that the total noise power decreases by up to 6% of the value 

obtained in the absence of external noise, but only for noise amplitude, by up to 

10% of the amplitude of the deterministic oscillating electric field. The benefit 

is present only for values of a noise correlation time smaller than 0.5 T (where 

T is the field period). 

The addition of a source of DM noise to the oscillating driving electric field can 

reduce the total noise power by up to 5%. We find this reduction in the whole 

range of amplitudes of the external fluctuations	
  investigated (up to 30% of the 

amplitude of the deterministic oscillating electric field). Furthermore, this 

effect is present for values of the noise correlation time up to 10 T (where T is 

the field period). For longer noise correlation times, the total noise power 

increases compared with the case of deterministic driving fields. 

 

 

 

 

 

 

 

 

 

 

 



	
   	
   65	
  

 

Chapter 5 

Monte Carlo Simulation of Spin 

Relaxation of Conduction 

Electrons in Silicon 
 

In previous chapters, we have seen how noise can assume a control role in 

transport phenomena, which is particularly relevant in nano-scale systems and 

devices. Furthermore, externally added noise may also assume a control role in 

the spin relaxation process. In spin-based devices, the information stored in a 

system of polarized electron spins, must be transferred, as attached, to mobile 

carriers by applying an external electric field [91]-[94], [46, 95]. In order to 

avoid nonlinear response, applied voltages are very low. Since low voltages are 

more susceptible to background noise, in the design of spintronic devices it is 

essential to understand the influence of fluctuations of the electric field on the 

spin depolarization process.  

In this chapter, we present the preliminary results obtained by using a 

semiclassical Monte Carlo (MC) approach to simulate both the electron 

transport and the spin dynamics. Spin relaxation is taken into account through 

the Elliot-Yafet mechanism [56, 57], which is dominant in-group IV materials.  

First, we validate the MC algorithm by comparing our numerical outcomes 

with those provided by the most recent theoretical models. Our results are in 

close agreement with the findings obtained from various analytical 

calculations. Furthermore, this chapter provides the experimental researcher 
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with an estimate of the spin lifetimes of drifting electrons in n-type Si crystals, 

at different temperatures and under different electron transport conditions. 

 

5.1 Spin relaxation dynamics  

In a silicon bulk, the Dyakonov-Perel spin relaxation mechanism is absent, due 

to its inversion symmetry, and under a non-degenerate regime, the spin 

depolarization process is mostly related to mechanisms in which electron spins 

have a small chance of flipping during each scattering. Spin-flip mechanisms 

can be classified within the Yafet and Elliott processes [56, 57]. The Yafet 

process involves spin-dependent interactions, whereas the states are viewed as 

pure spin states. The Elliott processes, on the other hand, are governed by spin 

mixing in the electron states of the conduction band, due to the crystal spin-

orbit coupling, whereas the interaction is spin independent. In fact, in the 

presence of spin-orbit interactions, the electronic Bloch states are given by a 

mixture of pure spin-up  |↑〉 and spin-down |↓〉 states [56, 57]: 

𝐤,⇑ = 𝑎! ↑ + 𝑏! ↓    𝑒!𝒌⋅𝒓 

𝐤,⇓ = 𝑎!!∗ ↓ + 𝑏!!∗ ↑    𝑒!𝒌⋅𝒓                                                                                    (5.1) 

with the lattice momentum k, effective spins ⇑, ⇓ and the spin-mixing 

parameter 𝑏! !. Both states have the same energy. For conduction electrons in 

silicon, spin-flip scattering is described by a matrix element that depends on 

the initial and final state wave vectors, as well as on the spin orientation, 

which has the form 

𝐤𝟐,⇓ 𝑯𝑺𝑭   𝐤𝟏,⇑                                                                                                                   (5.2) 

where HSF is a given spin-flip mechanism. The Elliot-Yafet spin lifetime τs can 

be related to the momentum relaxation time τm by the following expression [56, 

96, 97]: 

𝜏! =
𝜏!
4 𝑏!                                                                                                                                 (5.3)  
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where〈b2〉  is the Fermi surface average of the spin-mixing parameter. 

However, this relationship is not very accurate in silicon. In fact, it has been 

pointed out that:  

(i)    the spin-mixing parameter 𝑏! !varies in a broad range of values, 

depending on the value of the momentum k [96]; 

(ii) the scattering mechanisms dominating the relaxation of the 

momentum are different from those leading to spin relaxation [98,99]. 

The correct way to elucidate the spin relaxation mechanisms is by calculating 

the explicit form of the spin-flip electron-phonon matrix elements for the 

conduction states. Different theoretical approaches have addressed the 

calculation of both the spin mixing probabilities and the matrix element 

expressions for all the phonon-induced spin-flip transitions in the conduction 

band. These include, for example, the pseudopotential model reproducing spin-

orbit splittings of the relevant electronic states [98, 100], the group theory, the 

k•p perturbation method, the rigid-ion model [99], the parameter-free first-

principles method and the density fuctional perturbation theory [101], the 

adiabatic band charge models and the tight-binding models [102]. Starting 

from the detailed knowledge of a specific electron distribution, they calculate 

the relaxation rate τi for each different scattering mechanism. If several 

independent mechanisms of depolarization are present, the total spin 

relaxation time τs can be calculated by 

1
𝜏!
=

1
𝜏!!
                                                                                                                                (5.4) 

Short relaxation times are very important, while the longer ones can be 

neglected [103].   The approach we use here is different. Our MC code 

incorporates the electron spin dynamics by taking into account the spin mixing 

probabilities and the phonon-assisted spin flip transitions. We consider that 

the rates of transitions from the |     ⇑〉to the |   ⇓〉states are proportional to 

the square of the matrix elements of electron-lattice interaction, which causes a 

spin flip [56]. In particular, unlike the seminal work of Yafet [57], we take into 

account both intra and intervalley scattering. The spin mixing probability is of 

the order of 10-6, and depends on the value of k [98, 100]. In particular, more 
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energetic electrons strongly drive the average spin relaxation. In our simplified 

model, we only consider the following for spin-flipping  

• the intravalley acoustic phonons and  

• all six phonon modes of the intervalley f-processes. Spin-flipping due to 

g- processes can be neglected because its contribution is not significant 

in the temperature range considered (60<T<300 K) (see Fig. 8 in Ref. 

[99]). 

More details and the explicit calculation of the spin-flip matrix elements 

utilized in our code can be found in Refs. [98, 99]. The dependence of spin 

relaxation times on temperature and/or electric field amplitude has been 

investigated by simulating the dynamics of 5×103 electrons, initially polarized 

(P = 1) along the x-axis of the crystal at the injection plane. We calculate the 

polarization P as a function of time by averaging over the ensemble of 

electrons. The spin lifetime τs corresponds to the time necessary to achieve a 

reduction of the initial spin polarization by a factor of 1/e. 

 

5.2 Results and discussion [104]  

First, we calculated the contribution of acoustic-AC and optical-OP phonon 

scattering to the spin relaxation process separately, in the absence of an 

applied electric field. The spin relaxation time τs as a function of the crystal 

temperature is shown in Figure 5.1, where the contributions of AC-phonon 

(upper panel) or OP-phonon (lower panel) scattering mechanisms are 

considered. In each panel, our numerical findings are compared with the 

results provided by recent theoretical approaches. The agreement with the 

analytical trends is satisfactory in the whole range of lattice temperatures	
  
investigated. Furthermore, a comparison between the acoustic and optical 

phonon contribution to spin relaxation shows that AC phonon scattering is 

dominant in the low temperature range (T<200 K), while OP phonon assisted 

spin-flip transitions can no longer be neglected at higher temperatures. This is 

consistent with the fact that at smaller energies (lower temperatures) long-

wavelength acoustic phonon modes are more populated, whereas the growth of 

the phonon population with temperature for optical modes is faster than for 
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acoustic modes. 

 
Figure 5.1. Comparison between the MC-computed contributions to the spin relaxation process 

of acoustic-AC (upper panel) and optical-OP (lower panel) phonon scattering, and the results 

from recent theoretical approaches, as a function of temperature. 

 

In Fig. 5.2 the total electron spin lifetime computed in our simulations is 

compared  with recent theoretical and analytical findings,	
  as a function of the 

temperature. Although our MC code	
   still does not take into account the 

scattering of electrons with g-phonons and the interactions with impurities, 

and uses approximated relations for the spin-flip rates, the close agreement 

with the analytical theories, in the absence of applied electric fields, 

strengthens the reliability of our MC algorithm.  
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Figure 5.2. Comparison between our MC numerical total spin lifetime and the results from 

recent theoretical approaches, as a function of the temperature. 

 

Figure 5.3 shows the spin lifetimes	
   calculated in the presence of an electric 

field applied along the x- axis of the crystal, at three different temperatures, 

namely T=90, 120 and 300 K. 

 
Figure 5.3: Electron spin lifetime as a function of the applied electric field at three different 

values of the temperature. 

The presence of the driving electric field significantly affects the electron 

momentum distribution, which deviates from the equilibrium condition even at 
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low temperatures. This results in an enhancement of intervalley scattering and 

explains the rapid drop of spin lifetimes observed at electric fields higher than 

3 kV/cm. At room temperature, where no experimental data are yet available, 

our calculation predicts spin lifetimes of the order of 8 ns up to field amplitudes 

~ 5 kV/cm. When the electric field amplitude is maximum (E= 20 kV/cm), the 

effect of the temperature becomes almost negligible; all the three curves 

collapse and the spin relaxation times take on values between 1 and 2 ns. 

 

5.2 Future prospects 

The understanding of spin-related properties and spin transport in Si and 

related compounds is important for solid state physics, and possible 

applications of these materials in spintronics. In fact, in order to make 

spintronics a viable prospective technology, we need to find out the best 

conditions to achieve long spin relaxation times (or spin diffusion lengths) in 

semiconductor materials.  

In the future we will focus our attention on the calculation of the modifications 

of the spin depolarization length caused by the addition of an external source of 

correlated noise in Si bulk semiconductors, for different values of the static 

field strength, noise amplitude and correlation time. 
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Conclusions 

Noise in semiconductor devices has a significant impact on the performance of 

circuits. The capability to measure and characterize semiconductor device noise 

is a fundamental requirement for design. Noise characterization is also 

important to monitor semiconductor processes quality. Furthermore, in the 

design of spintronic devices it is essential to understand the influence of 

fluctuations in the electric field on the spin depolarization process. Previous 

detailed studies of the electron transport dynamics in a GaAs bulk, working 

under static or cyclostationary conditions, have revealed that, under specific 

conditions, the addition of a fluctuating component to the driving field can 

reduce the total noise power. Various studies of the electron spin relaxation 

process in GaAs bulks, at nitrogen temperature, have shown that a random 

contribution added to the static electric field can affect the spin decoherence 

length [49, 50]. 

On the other hand, to the best of our knowledge, no conditions have been found 

to suppress the electronic intrinsic noise in silicon bulk. Recently, electrical 

injection of spin polarization in n-type and p-type silicon up to room-

temperature have been experimentally carried out [51-53], but a 

comprehensive investigation into the influence of transport conditions on the 

spin depolarization process in silicon structures, in a wide range of values of 

temperature and amplitude of external fields, is still missing.  

In the wake of these findings, this thesis has focused on: 

• the investigation of the effects of the addition of an external source of noise 

on the carrier velocity fluctuations in Si semiconductor bulk and 2D (Si 

MOS inversion layer); 

• the development of a comprehensive theoretical framework concerning the 

influence of transport conditions on the spin depolarization process in 
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silicon structures, at a wide range of temperatures, doping concentrations 

and amplitudes of external fields 

In our studies, we used a numerical code Monte Carlo to simulate the transport 

and spin dynamics of the electrons in homogeneous semiconductors, in the 

presence of static periodic or fluctuating electric fields. All results were 

obtained in Si with a free electron concentration 1013 cm–3 (nondegenerate low-

doped n-type). We assumed that all donors are ionized and that the free 

electron concentration is equal to the doping concentration. 

Initially we investigated the effect on the intrinsic noise caused by the addition 

of external correlated fluctuations in a silicon MOS inversion layer, driven by a 

static electric field, for different values of both noise amplitude and correlation 

time. Our numerical results showed that if the amplitude of the driving field is 

E = 10 kV/cm, the spectrum of velocity fluctuations only changes in an 

appreciable way in the low-frequency region (f < 500 GHz). Furthermore, in the 

range of the amplitudes and correlation times of the external noise	
  
investigated, the transport dynamics of the Q2DEG do not received any benefit, 

in terms of a total noise power reduction. This also happens when the noise 

characteristic time is varied. If, on the other hand, the amplitude of the applied 

field is reduced to E = 4 kV/cm, in the presence of correlated noise, the variance 

of velocity fluctuations remains almost constant. This result implies that if the 

noise is suppressed in a certain frequency range, it must be enhanced in 

another range in order to keep a constant value of the total power of the 

fluctuating signal. Furthermore, the performances of semiconductor-based 

devices, working on a noisy environment, were not significantly affected.  Since 

the results obtained in the presence of a static electric field greater than 

2kV/cm showed no positive effects on the intrinsic noise of the system 

considered, we investigated the effect on the intrinsic noise caused by 

the addition of an external correlated noise source to a constant electric field of 

low intensity (E=1kV/cm), for different lattice temperatures T=300K and 

T=77K. The positive effects of external noise are observed at T=77K, while at 

T=300K there is only a small decrease in the low frequency region. 

Furthermore, the presence of noise reduces the height of the peak around 400 

GHz to T=77K, in a way that depends on the intensity and correlation time of 
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the none.. The ISD obtained with the addition of a source of correlated noise,  

at T=300K and T=77K, shows nonmonotonic behaviour as a function of the 

none amplitude. In particular we observed that the total noise power decreases 

by up to 2% of the value obtained in the absence of external noise, especially at 

T=77K for τD = 5ps, but only for noise amplitude by up to 15% of the amplitude 

of the deterministic electric field. 

In the second part of the thesis, we studied the hot-carrier noise in n-type Si 

crystals operating under high-frequency periodic electric fields. The noise 

properties are investigated by computing the spectral density of the electron 

velocity fluctuations and the total noise power, for different values of the 

intensity and frequency of the driving field. The noise features of hot-carriers 

driven by the periodic electric field are compared with those obtained in the 

presence of a static field, with the aim of investigating the modifications of the 

electronic noise spectra induced by the frequency and the strength of the 

applied field. We found a considerable reduction in the noise level for 

increasing frequencies of the driving field. This effect could be a consequence of 

the cooling of the distribution function, but further investigations are needed to 

clarify this result. Future work will be focused on a complete understanding 

and physical interpretation of the electronic noise features observed in Si 

devices driven by periodic electric fields, with the aim of obtaining relevant 

information for harmonic extraction purposes. 

Later we investigated the noise-induced effects on the electron transport 

dynamics in low-doped n-type Si crystals operating under a high-frequency 

periodic electric field, in the presence of two different kinds of external 

fluctuations: a dichotomous Markovian noise and a Gaussian correlated noise. 

The effects caused by the addition of an external noise source are investigated 

by studying the modifications in the correlation function of the electron velocity 

fluctuations and in its spectral density. The spectral density of the electron 

velocity fluctuations was studied by adopting a fluctuating periodic electric 

field with frequency f = 500 GHz.  

The amplitude of this field was chosen on the basis of a preliminary analysis of 

the variance of velocity fluctuations and the spectral density S0(E) at zero 

frequency, as a function of the amplitude of the oscillating field.  
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In the presence of an externalsource of  noise we observed a reduction of the 

ISD. In particular: 

•  in the case of  the addition of a Gaussian correlated component to the 

deterministic field, the ISD as a function of the noise amplitude shows a 

nonmonotonic behaviour. We observed that the total noise power decreases 

by up to 6% of the value obtained in the absence of external noise, but only 

for noise amplitude of up to 10% of the amplitude of the deterministic 

oscillating electric field. The benefit is present only for values of the noise 

correlation time smaller than 0.5T (where T is the field period). 

• the addition of a source of DM noise to the oscillating driving electric 

field can reduce the total noise power by up to 5%. We find this 

reduction in the whole range of amplitudes of the external fluctuations	
  
investigated (up to 30% of the amplitude of the deterministic oscillating 

electric field). Furthermore, this effect is present for values of the noise 

correlation time up to 10T (where T is the field period). For longer noise 

correlation times, the total noise power increases in relation to the case 

of deterministic driving fields. 

Finally, in order to study the influence of fluctuations of the electric field on 

spin relaxation process	
   in the future, we have developed a comprehensive 

theoretical framework concerning the influence of transport conditions on the 

spin depolarization process in silicon structures, by estimating both the spin 

lifetimes and the depolarization lengths as a function of the values of lattice 

temperature, electric field amplitude and doping density. In this thesis, we 

have given the preliminary results of the MC calculations of the spin lifetime 

for conduction electrons drifting in a silicon bulk. The electron spin total 

lifetime, computed in our simulations, has been compared, as a function of the 

temperature, with recent theoretical and analytical findings, showing that our 

numerical findings are in agreement with the results obtained by using 

different theoretical approaches. Furthermore, we also studied how spin 

lifetimes change in a wide range of temperature and electric field amplitudes. 

Our findings show that the presence of the driving electric field significantly 

affects the electron momentum distribution that deviates from the equilibrium 

condition even at low temperatures.   
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This fact is responsible for an enhancement of intervalley scattering and 

explains the rapid drop of spin lifetimes observed at electric fields higher than 

3 kV/cm. At room temperature, where up today no experimental data are yet 

available, our calculation predicts spin lifetimes of the order of 8 ns up to field 

amplitudes ~ 5 kV/cm. When the electric field amplitude is high (E= 20 kV/cm), 

the effect of the temperature becomes nearly negligible; all the three curves 

collapse and the spin relaxation times take values ranging between 1 and 2 ns. 

From this point of view, our Monte Carlo simulations can guide experimental 

studies and be very useful in designing efficient silicon based spintronic-

devices. 

The future of this research will involve both the extension of the results 

obtained in heterostructures and nanostructures, and the study of the 

modifications of the spin depolarization length caused by the addition of an 

external source of correlated noise in Si bulk semiconductors, for different 

values of the static field strength, noise amplitude and correlation time.  

Furthermore, our investigation of the effects produced by an external source of 

noise on the carrier velocity fluctuations and on the spin dynamics in 

semiconductors will be continued by using different sources of noise, i.e.  Lévy 

noise and colored noise. 
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