26 research outputs found

    Genetic defects in common variable immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) is the most frequent clinically manifested primary immunodeficiency. According to clinical and laboratory findings, CVID is a heterogeneous group of diseases. Recently, the defects of molecules regulating activation and terminal differentiation of B lymphocytes have been described in some patients with CVID. In this study, we show the overview of deficiencies of inducible costimulator, transmembrane activator and calcium-modulator and cytophilin ligand interactor, CD19 molecules, their genetic basis, pathogenesis and clinical manifestations

    Rapid IL-4 production by Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells in resistant mice treated once with anti-IL-12 or -IFN-gamma antibodies at the onset of infection with Leishmania major instructs Th2 cell development, resulting in nonhealing lesions.

    No full text
    Rapid production of IL-4 by Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) T cells expressing the V beta 4-V alpha 8 TCR chains has been shown to drive aberrant Th2 cell development and susceptibility to Leishmania major in BALB/c mice. In contrast, mice from resistant strains fail to express this early IL-4 response. However, administration of either anti-IL-12 or -IFN-gamma at the initiation of infection allows the expression of this early IL-4 response in resistant mice. In this work we show that Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells also expressing the V beta 4-V alpha 8 TCR chains are the source of the early IL-4 response to L. major in resistant mice given anti-IL-12 or -IFN-gamma Abs only at the onset of infection. Strikingly, these cells were found to be required for the reversal of the natural resistance of C57BL/6 mice following a single administration of anti-IL-12 or -IFN-gamma Abs. Together these results suggest that a deficiency in mechanisms capable of down-regulating the early IL-4 response to L. major contributes to the exquisite susceptibility of BALB/c mice to L. major
    corecore