60 research outputs found

    3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    Get PDF
    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability

    Substantial effect of water on radical melt crosslinking and rheological properties of poly(Δ-caprolactone)

    Get PDF
    One-step reactive melt processing (REx) via radical reactions was evaluated with the aim of improving the rheological properties of poly(Δ-caprolactone) (PCL). In particular, a waterassisted REx was designed under the hypothesis of increasing crosslinking efficiency with water as a low viscous medium in comparison with a slower PCL macroradicals diffusion in the melt state. To assess the effect of dry vs. water-assisted REx on PCL, its structural, thermo-mechanical and rheological properties were investigated. Water-assisted REx resulted in increased PCL gel fraction compared to dry REx (from 1–34%), proving the rationale under the formulated hypothesis. From dynamic mechanical analysis and tensile tests, the crosslink did not significantly affect the PCL mechanical performance. Dynamic rheological measurements showed that higher PCL viscosity was reached with increasing branching/crosslinking and the typical PCL Newtonian behavior was shifting towards a progressively more pronounced shear thinning. A complete transition from viscous-to solid-like PCL melt behavior was recorded, demonstrating that higher melt elasticity can be obtained as a function of gel content by controlled REx. Improvement in rheological properties offers the possibility of broadening PCL melt processability without hindering its recycling by melt processing

    Surface modification effects on nanocellulose - molecular dynamics simulations using umbrella sampling and computational alchemy

    Get PDF
    Topochemical modification of nanocellulose particles, in particular acetylation, is commonly used to reduce hygroscopicity and improve their dispersibility in non-polar polymers. Despite enormous experimental efforts on cellulose surface modification, there is currently no comprehensive model which considers both (a) the specific interactions between nanocellulose particles and the surrounding liquid or polymer matrix, and (b) the interactions between the particles themselves. The second mechanism is therefore frequently ignored. The present approach is based on atomistic molecular dynamics (MD) simulations, where computational alchemy is used to calculate the changes in interactions between nanocellulose and the surrounding medium (liquid or polymer) upon modification. This is combined with another method, based on potential of mean force, to calculate interactions between particles. Results show that both contributions are of equal importance for nanoparticle surface acetylation effects. The proposed method is not restricted to either cellulose or acetylation, and has the prospect to find application in a broad context of nanomaterials design

    Effect of the processing on the properties of biopolymer based composites filled with wood flour

    Get PDF
    Wood-polymer composites (WPCs) are well known today in the field of industrial applications, because of several advantages they can grant if compared with mineral filler-polymer composites. These advantages regard the low cost of wood based fillers, the reduced specific weight, the lower hazards for production workers in case of inhalation, the special aesthetic features, environmental issues. The scientific literature reports studies regarding polymer matrices like, for instance, polyethylene and polypropylene, in combination with several natural-organic fillers. However, a limit of these composites is represented by the fact that there is not a full biodegradability: this, in fact, regards only the filler, therefore the environmental performance is lower than expected. To overcome this limit, it is necessary to replace the traditional, non- biodegradable polymer matrices (typically, polyolefins) with biodegradable ones. An available solution consists in the use of biodegradable polymers like, for instance, those belonging to the Mater-BiÂź family

    Biodegradable polymer-wood flour composites: main properties and biodegradability

    Get PDF
    During the last years, a considerably increasing rate of attention has arisen on biodegradable polymers. In the meanwhile, the use of wood-plastic composites (WPC) has grown in importance, especially in the United States. The combination of biodegradable polymers and wood-based fillers allows obtaining the typical advantages achievable with the use of WPCs, with the further advantage of the biodegradability and compostability of the matrix (and not only of the filler). In this work, the characterization and the biodegradability assessment of Mater-BiÂź-wood flour composites have been carried out

    Synergistic reinforcement of a reversible Diels-Alder type network with nanocellulose

    Get PDF
    Covalent adaptable networks are attractive intermediates between thermosets and thermoplastics. To achieve an optimal combination of dimensional stability at the temperature of use and macroscopic flow at elevated temperatures, materials that combine two reversible networks are highly sought after. We demonstrate that such a material can be created through the addition of cellulose microfibrils to a polymer matrix that can undergo thermoreversible Diels-Alder reactions. The cellulose microfibrils and crosslinked polymer form two independent reversible networks that display clear synergistic effects on the thermomechanical properties of the nanocomposite. Above the glass transition temperature of the polymer matrix the two networks work in tandem to reduce tensile creep by a factor of 40 at 80 degrees C, while increasing the storage modulus by a factor of 60 at the same temperature. The adaptability of the Diels-Alder network is not compromised by the addition of cellulose microfibrils, as shown by kinetic studies and repeated reprocessing. Further, the cellulose network significantly improves the dimensional stability at elevated temperatures where the Diels-Alder network dissociates

    Thermo-mechanical variability of post-industrial and post-consumer recyclate PC-ABS

    Get PDF
    The aim of this work is to investigate the performance variability of post-industrial (PIR) and post-consumer recycled (PCR) polycarbonate acrylonitrile-butadiene-styrene (PC-ABS). In addition, necessary testing methodology for understanding polymer variation in recycled polymers are established. The thermal expansion behaviour of all tested material were found to be similar and FT-IR testing revealed no conclusive evidence of oxidative degradation. Both PIR and PCR exhibited similar levels of variation in mechanical properties compared with prime samples, with the exception of elongation at break and quasi-static impact behaviour. In these two tests, prime polymers showed lower variation and superior performance to both recycled polymers. The presence of defects and changes in molecular weight were determined to be leading causes of the reduced deformability. Our work contributes by identifying key areas where recycled PC-ABS show good potential as replacements for neat PC-ABS. Furthermore, the work demonstrates methods for material testing against performance criteria to pave way for effective replacement of neat PC-ABS with its recycled counterparts

    Water-assisted melt processing of cellulose biocomposites with poly(Δ-caprolactone) or poly(ethylene-acrylic acid) for the production of carton screw caps

    Get PDF
    Composites in 25 kg batches were compounded of cellulose nanocrystals (CNC) and thermomechanical pulp (TMP) and shaped into caps at industrial facilities on a pilot-plant scale. Some of the material was also injection molded into plaques to compare the effect of laboratory-scale and pilot-scale compounding of poly(ethylene-co-acrylic acid) (EAA7) and poly(caprolactone) composites reinforced with 10\ua0wt% CNC and TMP. The materials compounded under laboratory-scale conditions showed a different morphology, improved mechanical properties, and a higher viscosity, than the materials compounded on a pilot-scale. In some cases, the rheological properties of the melts indicated the presence of a relatively strong percolating cellulosic network, and the interphase region between the cellulose and the matrix appears to be important for the mechanical performance of the composites. After the compounding on a pilot scale, both the length and width of the pulp fibers was reduced. The TMP provided better reinforcement than the CNC possibly due to the higher aspect ratio

    Reactive melt crosslinking of cellulose nanocrystals/poly(Δ-caprolactone) for heat-shrinkable network

    Get PDF
    Focusing on the challenge of non-biodegradable plastics replacement, we propose a design for peroxide-initiated crosslinking of biodegradable poly(Δ-caprolactone) (PCL) and renewable cellulose nanocrystals (CNCs) bionanocomposites. An industrially scalable water-assisted reactive melt-processing (REx) is studied to explore the hypothesis of synergy between simultaneous effects of water on improving CNC dispersion and boosting PCL branching/crosslinking. We demonstrate that the melt processing control enables the preparation of targeted thermoplastic/thermoset bionanocomposites with gel content up to ≈ 40 %, identified as the limit of their melt-processability. Structural characterization reveals that ≈ 70 wt% of the initial CNC content is irreversibly incorporated in a percolating network, enhancing the crosslinked bionanocomposites properties. The bionanocomposites\u27 complex viscosity and elastic character increase with the gel content, thus improving PCL melt performance. Furthermore, the irreversible entrapment of CNCs in the 3D percolating network provides heat-shrinkability, indicating a potential of the reacted bionanocomposites for heat-triggered shape-memory
    • 

    corecore