6 research outputs found
An electrooptical muscle contraction sensor
An electrooptical sensor for the detection of muscle contraction is described. Infrared light is injected into the muscle, the backscattering is observed, and the contraction is detected by measuring the change, that occurs during muscle contraction, between the light scattered in the direction parallel and perpendicular to the muscle cells. With respect to electromyography and to optical absorption-based sensors, our device has the advantage of lower invasiveness, of lower sensitivity to electromagnetic noise and to movement artifacts, and of being able to distinguish between isometric and isotonic contractions
Separability of neural responses to standardised mechanical stimulation of limbs
Abstract Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available onlin
A phantom axon setup for validating models of action potential recordings
International audienceIn this paper, we proposed a new geometric finite mixture model-based adaptive arithmetic coding (AAC) for lossless image compression. Applying AAC for image compression, large compression gains can be achieved only through the use of sophisticated models that provide more accurate probabilistic descriptions of the image. In this work, we proposed to divide the residual image into non-overlapping blocks, and then we model the statistics of each block by a mixture of geometric distributions of parameters estimated through the maximum likelihood estimation using the expectation–maximization algorithm. Moreover, a histogram tail truncation method within each predicted error block is used in order to reduce the number of symbols in the arithmetic coding and therefore to reduce the effect of the zero-occurrence symbols. Experimentally, we showed that using convenient block size and number of mixture components in conjunction with the prediction technique median edge detector, the proposed method outperforms the well known lossless image compressors