14 research outputs found
Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation
BACKGROUND: Theophylline has been used widely as a bronchodilator for the treatment of bronchial asthma and has been suggested to modulate immune response. While the importance of macrophages in asthma has been reappraised and emphasized, their significance has not been well investigated. We conducted a genome-wide profiling of the gene expressions of macrophages in response to theophylline. METHODS: Microarray technology was used to profile the gene expression patterns of macrophages modulated by theophylline. Northern blot and real-time quantitative RT-PCR were also used to validate the microarray data, while Western blot and ELISA were used to measure the levels of IL-13 and LTC4. RESULTS: We identified dozens of genes in macrophages that were dose-dependently down- or up-regulated by theophylline. These included genes related to inflammation, cytokines, signaling transduction, cell adhesion and motility, cell cycle regulators, and metabolism. We observed that IL-13, a central mediator of airway inflammation, was dramatically suppressed by theophylline. Real-time quantitative RT-PCR and ELISA analyses also confirmed these results, without respect to PMA-treated THP-1 cells or isolated human alveolar macrophages. Theophylline, rolipram, etazolate, db-cAMP and forskolin suppressed both IL-13 mRNA expression (~25%, 2.73%, 8.12%, 5.28%, and 18.41%, respectively) and protein secretion (<10% production) in macrophages. These agents also effectively suppressed LTC4 expression. CONCLUSION: Our results suggest that the suppression of IL-13 by theophylline may be through cAMP mediation and may decrease LTC4 production. This study supports the role of theophylline as a signal regulator of inflammation, and that down regulation of IL-13 by theophylline may have beneficial effects in inflammatory airway diseases
Nrf2, a PPARγ Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria
CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARγ. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARγ. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARγ-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARγ. In these conditions, Nrf2 activators, but not PPARγ ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARγ in the control of severe malaria through parasite clearance
Fishing strategies among prehistoric populations at Saquarema Lagoonal Complex, Rio de Janeiro, Brazil
Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation
CD36 is an 88-kD integral membrane glycoprotein expressed on monocytes, platelets, and certain microvascular endothelium serving distinct cellular functions both as an adhesive receptor for thrombospondin, collagen, and Plasmodium falciparum-infected erythrocytes, and as a scavenger receptor for oxidized low-density lipoprotein and apoptotic neutrophils. In this study, we examined the expression of CD36 during in vitro differentiation of peripheral blood monocytes into culture- derived macrophages. Steady-state mRNA levels of CD36 showed a transient eightfold increase during monocyte-to-macrophage differentiation, peaking at the early macrophage stage (days 3 or 4 in culture), following a gradual decrease back to baseline levels by the mature macrophage stage (days 7 or 8 in culture). Immunoblotting with monoclonal antibodies to CD36 supported this transient, yet significant (8- to 10-fold) increase in total protein levels of CD36. The increased CD36 protein was observed at the plasma membrane, whereas an intracellular pool of CD36 was also detected from day 2 to day 6 in culture through indirect immunofluorescence. A concomitant twofold increase in the cells' ability to bind 125I-thrombospondin at the early macrophage stage (day 4) verified the functional competency of the plasma membrane localized CD36, and supported the presence of an intracellular pool of CD36. The in vitro differentiated macrophages as well as alveolar macrophages remained responsive to macrophage colony- stimulating factor (M-CSF), a known transcriptional regulator of monocyte CD36. The M-CSF-induced macrophages resulted in enhanced foam cell formation, which was inhibitable with monoclonal antibodies to CD36. Thus, the transient expression of CD36 during monocyte-to- macrophage differentiation, and the ability of M-CSF to maintain macrophage CD36 at elevated levels, may serve as a critical process in dictating the functional activity of CD36 during inflammatory responses and atherogenesis.</jats:p
Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation
Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation
Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation
Abstract
CD36 is an 88-kD integral membrane glycoprotein expressed on monocytes, platelets, and certain microvascular endothelium serving distinct cellular functions both as an adhesive receptor for thrombospondin, collagen, and Plasmodium falciparum-infected erythrocytes, and as a scavenger receptor for oxidized low-density lipoprotein and apoptotic neutrophils. In this study, we examined the expression of CD36 during in vitro differentiation of peripheral blood monocytes into culture- derived macrophages. Steady-state mRNA levels of CD36 showed a transient eightfold increase during monocyte-to-macrophage differentiation, peaking at the early macrophage stage (days 3 or 4 in culture), following a gradual decrease back to baseline levels by the mature macrophage stage (days 7 or 8 in culture). Immunoblotting with monoclonal antibodies to CD36 supported this transient, yet significant (8- to 10-fold) increase in total protein levels of CD36. The increased CD36 protein was observed at the plasma membrane, whereas an intracellular pool of CD36 was also detected from day 2 to day 6 in culture through indirect immunofluorescence. A concomitant twofold increase in the cells' ability to bind 125I-thrombospondin at the early macrophage stage (day 4) verified the functional competency of the plasma membrane localized CD36, and supported the presence of an intracellular pool of CD36. The in vitro differentiated macrophages as well as alveolar macrophages remained responsive to macrophage colony- stimulating factor (M-CSF), a known transcriptional regulator of monocyte CD36. The M-CSF-induced macrophages resulted in enhanced foam cell formation, which was inhibitable with monoclonal antibodies to CD36. Thus, the transient expression of CD36 during monocyte-to- macrophage differentiation, and the ability of M-CSF to maintain macrophage CD36 at elevated levels, may serve as a critical process in dictating the functional activity of CD36 during inflammatory responses and atherogenesis.</jats:p
Peroxisome-proliferator-activated-receptor gamma (PPARγ) independent induction of CD36 in THP-1 monocytes by retinoic acid
Retinoic acid (RA) has been shown to regulate cellular growth and differentiation of a variety of cell types, including cells of the myelomonocytic lineage. We used the monocytic leukaemia cell line THP-1, which differentiates to macrophages in response to phorbol 12-myristate 13-acetate (PMA), to investigate the regulation by RA of genes in the scavenger receptor type B family (CD36) in human monocyte/macrophages. Reverse transcription–polymerase chain reaction and flow cytometry demonstrated that, like PMA and the natural peroxisome-proliferator-activated receptor-γ (PPARγ) ligand 15d-PGJ2, RA induced CD36 gene expression in these cells. Moreover, RA plus 15d-PGJ2 further enhanced CD36 protein and mRNA levels over that seen with the RA or PPARγ compounds alone. The PPARγ antagonist GW9662 was shown to block completely PPARγ-ligand induction of CD36 gene expression, but had little effect on the action of RA. Our data indicated that RXR- and RAR-specific ligands (LG153 and TTNPB, respectively) were each alone able to increase CD36 mRNA and surface protein levels. By using calphostin C, a specific protein kinase C (PKC) inhibitor, we demonstrated that induction of CD36 by PMA, as well as by PPARγ and RXR ligands were dependent upon PKC activation. In contrast, activation of CD36 through the RAR pathway was not affected by inhibition of PKC activity. Taken together, these data demonstrate that RA can up-regulate CD36 expression in human monocytes/macrophages. This regulation appears to be predominantly mediated through the RAR/RXR pathway of action and, unlike previously described methods of CD36 modulation, is independent of PPARγ and PKC signalling. This study suggests a possible role for RA in physiological processes involving the scavenger receptor function in cells of the monocyte/macrophage lineage
Association of plasma macrophage colony-stimulating factor with cardiovascular morbidity and all-cause mortality in chronic hemodialysis patients
Molecular Basis of Human CD36 Gene Mutations
CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena
