27 research outputs found

    The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations

    Get PDF
    Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations

    FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling

    Get PDF
    Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens

    Killer immunoglobulin-like receptor expression on single cells: a cautionary note

    No full text
    Natural killer (NK) cells keep the surface expression of major histocompatibility complex (MHC) class I molecules under surveillance using killer immunoglobulin-like receptors (KIR). Virus-infected or aberrant cells are frequently characterized by a reduced surface expression of MHC class I antigens and may therefore be removed by cytolysis. NK cells are heterogeneous with regard to the expression of KIR genes. The resulting subpopulations show distinguishable specificities allowing the recognition of cells lacking varying combinations of MHC class I antigens. The KIR expression pattern in single NK cells has previously been analyzed by Husain and colleagues by cDNA preamplification of CD3(−) CD56(+) single cells and subsequent gene-specific polymerase chain reaction. We show here that the data of this study contain inconsistencies. These inconsistencies are discussed in the context of KIR mRNA abundance and single-cell cDNA amplification efficiency

    A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin

    Get PDF
    Peptide antibiotics are typically biosynthesized by one of two distinct machineries in a ribosome-dependent or ribosome-independent manner. Pheganomycin (PGM (1)) and related analogs consist of the nonproteinogenic amino acid (S)-2-(3,5-dihydroxy-4-hydroxymethyl)phenyl-2-guanidinoacetic acid (2) and a proteinogenic core peptide, making their origin uncertain. We report the identification of the biosynthetic gene cluster from Streptomyces cirratus responsible for PGM production. Unexpectedly, the cluster contains a gene encoding multiple precursor peptides along with several genes plausibly encoding enzymes for the synthesis of amino acid 2. We identified PGM1, which has an ATP-grasp domain, as potentially capable of linking the precursor peptides with 2, and validate this hypothesis using deletion mutants and in vitro reconstitution. We document PGM1's substrate permissivity, which could be rationalized by a large binding pocket as confirmed via structural and mutagenesis experiments. This is to our knowledge the first example of cooperative peptide synthesis achieved by ribosomes and peptide ligases using a peptide nucleophile

    Host's innate immune response to fungal and bacterial agents in vitro: up-regulation of interleukin-15 gene expression resulting in enhanced natural killer cell activity

    No full text
    Natural killer (NK) cells play an important role in the first line of defence against viral infections. We have shown earlier that exposure of human peripheral blood mononuclear cells (PBMC) to viruses results in rapid up-regulation of NK cell activity via interleukin-15 (IL-15) induction, and that this mechanism curtails viral infection in vitro. By using Candida albicans, Escherichia coli and Staphylococcus aureus, we now show here that exposure of PBMC to fungi and bacteria also results in an immediate increase of NK cytotoxicity. Reverse transcriptase–polymerase chain reaction and Western blot analyses as well as the use of antibodies against different cytokines revealed that IL-15 induction played a predominant role in this NK activation. These results indicate that IL-15 is also involved in the innate immune response against fungal and bacterial agents
    corecore