36 research outputs found
Dysplasia of the Upper Aerodigestive Tract Squamous Epithelium
Dysplasia of the oral, laryngeal and oropharyngeal stratified squamous epithelia is a microscopically defined change that may occur in clinically identifiable lesions including erythroplakia, leukoplakia and erythroleukoplakia, lesions that convey a heightened risk for carcinomatous progression. Dysplastic lesions have been classified microscopically according to degree of cytologic atypia and changes in architectural patterns, usually on a three part or four part gradation scale. Vocal cord epithelial lesions are graded according to either the Ljubljana or the World Health Organization (WHO) system whereas oral dysplasias are generally classified according to WHO criteria. Cytologically atypical cells are considered to represent precancerous changes predicting an increase risk for carcinomatous transformation. Inter- and intra-rater reliability studies among pathologists have disclosed low correlation coefficients for four part grading systems, whereas improved agreement is achieved (kappa correlation values) using the Ljubljana systems. Evidence forwarded by some studies supports the prognostic value of progressively severe dysplastic changes for carcinomatous transformation; however, some studies indicate that the presence of a clinically defined lesion without microscopic evidence of dysplasia also connotes increased risk for carcinomatous transformation. Loss of heterozygosity (LOH) at 3p and 9p microsatellite domains, DNA ploidy analysis and nuclear image analyses may have predictive value as molecular and histomorphological biomarkers
Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves
Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations
Recommended from our members
Community-Driven Metadata Standards for Agricultural Microbiome Research
Accelerating the pace of microbiome science to enhance crop productivity and agroecosystem health will require transdisciplinary studies, comparisons among datasets, and synthetic analyses of research from diverse crop management contexts. However, despite the widespread availability of crop-associated microbiome data, variation in field sampling and laboratory processing methodologies, as well as metadata collection and reporting, significantly constrains the potential for integrative and comparative analyses. Here we discuss the need for agriculture-specific metadata standards for microbiome research, and propose a list of “required” and “desirable” metadata categories and ontologies essential to be included in a future minimum information metadata standards checklist for describing agricultural microbiome studies. We begin by briefly reviewing existing metadata standards relevant to agricultural microbiome research, and describe ongoing efforts to enhance the potential for integration of data across research studies. Our goal is not to delineate a fixed list of metadata requirements. Instead, we hope to advance the field by providing a starting point for discussion, and inspire researchers to adopt standardized procedures for collecting and reporting consistent and well-annotated metadata for agricultural microbiome research