5 research outputs found

    The adult galactosemic phenotype

    Get PDF
    BackgroundClassic galactosemia is an autosomal recessive disorder due to galactose‐1‐phosphate uridyltransferase (GALT) deficiency. Newborn screening and early treatment do not completely prevent tremor, speech deficits, and diminished IQ in both sexes and premature ovarian insufficiency (POI) in women. Data on how individuals with galactosemia fare as adults will improve our ability to predict disease progression.MethodsThirty‐three adults (mean age = 32.6 ± 11.7 years; range = 18–59) with classic galactosemia, confirmed by genotype and undetectable GALT enzyme activity, were evaluated. Analyses assessed associations among age, genotype, clinical features and laboratory measures.ResultsThe sample included 17 men and 16 women. Subjects exhibited cataracts (21%), low bone density (24%), tremor (46%), ataxia (15%), dysarthria (24%), and apraxia of speech (9%). Subjects reported depression (39%) and anxiety (67%). Mean full scale IQ was 88 ± 20, (range = 55–122). All subjects followed a dairy‐free diet and 75–80% reported low intake of calcium and vitamin D. Mean height, weight and body mass were within established norms. All female subjects had been diagnosed with POI. One woman and two men had had children. Logistic regression analyses revealed no associations between age, genotype or gender with IQ, tremor, ataxia, dysarthria, apraxia of speech or anxiety. Each 10‐ year increment of age was associated with a twofold increase in odds of depression.ConclusionsTaken together, these data do not support the hypothesis that galactosemia is a progressive neurodegenerative disease. However, greater attention to depression, anxiety, and social relationships may relieve the impact of this disorder in adults

    Autoreactive B cells and epigenetics.

    No full text
    Autoreactive B cells are central in the pathogenesis of autoimmune diseases (AID) not only by producing autoantibodies but also by secreting cytokines and by presenting autoantigens. Changes in DNA methylation, histone modifications, and miRNA expression, the hallmarks of epigenetic failure, characterize B cells isolated from patients with AID, highlighting the contribution of epigenetic processes to autoreactivity. Additional evidence of epigenetic involvement in the development of B cell autoreactivity comes from in vivo and in vitro studies using DNA demethylating agents as accelerating factors or histone deacetylase inhibitors as repressing factors. As a result, a better understanding of the altered epigenetic processes in AID and in particular in B cells opens perspectives for the development of new therapeutics.Journal ArticleReviewinfo:eu-repo/semantics/publishe
    corecore