6 research outputs found

    Violation-mitigation-based method for PV hosting capacity quantification in low voltage grids

    Get PDF
    Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited building rooftop solar potential. A downward process is proposed—from the starting state with expected violations on the grid operation to a state with no violations. In this process, the installed PV capacity is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity in a more general setting with the method proposed.publishedVersionPaid open acces

    Optimal power tracking for autonomous demand side management of electric vehicles

    Get PDF
    Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.publishedVersio
    corecore