22,081 research outputs found
To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.
Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness
Validity, reliability, acceptability, and utility of the Social Inclusion Questionnaire User Experience (SInQUE): a clinical tool to facilitate social inclusion amongst people with severe mental health problems.
BACKGROUND: Individuals with severe mental health problems are at risk of social exclusion, which may complicate their recovery. Mental health and social care staff have, until now, had no valid or reliable way of assessing their clients' social inclusion. The Social Inclusion Questionnaire User Experience (SInQUE) was developed to address this. It assesses five domains: social integration; productivity; consumption; access to services; and political engagement, in the year prior to first psychiatric admission (T1) and the year prior to interview (T2) from which a total score at each time point can be calculated. AIMS: To establish the validity, reliability, and acceptability of the SInQUE in individuals with a broad range of psychiatric diagnoses receiving care from community mental health services and its utility for mental health staff. METHOD: Participants were 192 mental health service users with psychosis, personality disorder, or common mental disorder (e.g., depression, anxiety) who completed the SInQUE alongside other validated outcome measures. Test-retest reliability was assessed in a sub-sample of 30 participants and inter-rater reliability was assessed in 11 participants. SInQUE ratings of 28 participants were compared with those of a sibling with no experience of mental illness to account for shared socio-cultural factors. Acceptability and utility of the tool were assessed using completion rates and focus groups with staff. RESULTS: The SInQUE demonstrated acceptable convergent validity. The total score and the Social Integration domain score were strongly correlated with quality of life, both in the full sample and in the three diagnostic groups. Discriminant validity and test-retest reliability were established across all domains, although the test-retest reliability on scores for the Service Access and Political Engagement domains prior to first admission to hospital (T1) was lower than other domains. Inter-rater reliability was excellent for all domains at T1 and T2. CONCLUSIONS: The component of the SInQUE that assesses current social inclusion has good psychometric properties and can be recommended for use by mental health staff
A realist interpretation of quantum mechanics based on undecidability due to gravity
We summarize several recent developments suggesting that solving the problem
of time in quantum gravity leads to a solution of the measurement problem in
quantum mechanics. This approach has been informally called "the Montevideo
interpretation". In particular we discuss why definitions in this approach are
not "for all practical purposes" (fapp) and how the problem of outcomes is
resolved.Comment: 7 pages, IOPAMS style, no figures, contributed to the proceedings of
DICE 2010, Castiglioncello, slightly improved versio
Towards practical classical processing for the surface code
The surface code is unarguably the leading quantum error correction code for
2-D nearest neighbor architectures, featuring a high threshold error rate of
approximately 1%, low overhead implementations of the entire Clifford group,
and flexible, arbitrarily long-range logical gates. These highly desirable
features come at the cost of significant classical processing complexity. We
show how to perform the processing associated with an nxn lattice of qubits,
each being manipulated in a realistic, fault-tolerant manner, in O(n^2) average
time per round of error correction. We also describe how to parallelize the
algorithm to achieve O(1) average processing per round, using only constant
computing resources per unit area and local communication. Both of these
complexities are optimal.Comment: 5 pages, 6 figures, published version with some additional tex
Preparing encoded states in an oscillator
Recently a scheme has been proposed for constructing quantum error-correcting
codes that embed a finite-dimensional code space in the infinite-dimensional
Hilbert space of a system described by continuous quantum variables. One of the
difficult steps in this scheme is the preparation of the encoded states. We
show how these states can be generated by coupling a continuous quantum
variable to a single qubit. An ion trap quantum computer provides a natural
setting for a continuous system coupled to a qubit. We discuss how encoded
states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe
The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables
Abundance analyses from high-resolution optical spectra are presented for 19
Type II Cepheids in the Galactic field. The sample includes both short-period
(BL Her) and long-period (W Vir) stars. This is the first extensive abundance
analysis of these variables. The C, N, and O abundances with similar spreads
for the BL Her and W Vir show evidence for an atmosphere contaminated with
-process and CN-cycling products. A notable anomaly of the BL Her
stars is an overabundance of Na by a factor of about five relative to their
presumed initial abundances. This overabundance is not seen in the W Vir stars.
The abundance anomalies running from mild to extreme in W Vir stars but not
seen in the BL Her stars are attributed to dust-gas separation that provides an
atmosphere deficient in elements of high condensation temperature, notably Al,
Ca, Sc, Ti, and -process elements. Such anomalies have previously been seen
among RV Tau stars which represent a long-period extension of the variability
enjoyed by the Type II Cepheids. Comments are offered on how the contrasting
abundance anomalies of BL Her and W Vir stars may be explained in terms of the
stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication
in Ap
Analog quantum error correction
Quantum error-correction routines are developed for continuous quantum
variables such as position and momentum. The result of such analog quantum
error correction is the construction of composite continuous quantum variables
that are largely immune to the effects of noise and decoherence.Comment: Ten pages, Te
Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
We provide fast algorithms for simulating many body Fermi systems on a
universal quantum computer. Both first and second quantized descriptions are
considered, and the relative computational complexities are determined in each
case. In order to accommodate fermions using a first quantized Hamiltonian, an
efficient quantum algorithm for anti-symmetrization is given. Finally, a
simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure
Linear optics substituting scheme for multi-mode operations
We propose a scheme allowing a conditional implementation of suitably
truncated general single- or multi-mode operators acting on states of traveling
optical signal modes. The scheme solely relies on single-photon and coherent
states and applies beam splitters and zero- and single-photon detections. The
signal flow of the setup resembles that of a multi-mode quantum teleportation
scheme thus allowing the individual signal modes to be spatially separated from
each other. Some examples such as the realization of cross-Kerr nonlinearities,
multi-mode mirrors, and the preparation of multi-photon entangled states are
considered.Comment: 11 pages, 4 eps-figures, using revtex
- …
