7 research outputs found

    A mechanistic explanation of the transition to simple multicellularity in fungi.

    Get PDF
    Development of multicellularity was one of the major transitions in evolution and occurred independently multiple times in algae, plants, animals, and fungi. However recent comparative genome analyses suggest that fungi followed a different route to other eukaryotic lineages. To understand the driving forces behind the transition from unicellular fungi to hyphal forms of growth, we develop a comparative model of osmotrophic resource acquisition. This predicts that whenever the local resource is immobile, hard-to-digest, and nutrient poor, hyphal osmotrophs outcompete motile or autolytic unicellular osmotrophs. This hyphal advantage arises because transporting nutrients via a contiguous cytoplasm enables continued exploitation of remaining resources after local depletion of essential nutrients, and more efficient use of costly exoenzymes. The model provides a mechanistic explanation for the origins of multicellular hyphal organisms, and explains why fungi, rather than unicellular bacteria, evolved to dominate decay of recalcitrant, nutrient poor substrates such as leaf litter or wood

    Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus

    Get PDF
    Commercial cultivation of the mushroom fungus, Agaricus bisporus, utilizes a substrate consisting of a lower layer of compost and upper layer of peat. Typically, the two layers are seeded with individual mycelial inoculants representing a single genotype of A. bisporus. Studies aimed at examining the potential of this fungal species as a heterologous protein expression system have revealed unexpected contributions of the mycelial inoculants in the morphogenesis of the fruiting body. These contributions were elucidated using a dual-inoculant method whereby the two layers were differientially inoculated with transgenic β-glucuronidase (GUS) and wild-type (WT) lines. Surprisingly, use of a transgenic GUS line in the lower substrate and a WT line in the upper substrate yielded fruiting bodies expressing GUS activity while lacking the GUS transgene. Results of PCR and RT-PCR analyses for the GUS transgene and RNA transcript, respectively, suggested translocation of the GUS protein from the transgenic mycelium colonizing the lower layer into the fruiting body that developed exclusively from WT mycelium colonizing the upper layer. Effective translocation of the GUS protein depended on the use of a transgenic line in the lower layer in which the GUS gene was controlled by a vegetative mycelium-active promoter (laccase 2 and β-actin), rather than a fruiting body-active promoter (hydrophobin A). GUS-expressing fruiting bodies lacking the GUS gene had a bonafide WT genotype, confirmed by the absence of stably inherited GUS and hygromycin phosphotransferase selectable marker activities in their derived basidiospores and mycelial tissue cultures. Differientially inoculating the two substrate layers with individual lines carrying the GUS gene controlled by different tissue-preferred promoters resulted in up to a ∼3.5-fold increase in GUS activity over that obtained with a single inoculant. Our findings support the existence of a previously undescribed phenomenon of long-distance protein translocation in A. bisporus that has potential application in recombinant protein expression and biotechnological approaches for crop improvement

    The Mycelium as a Network

    No full text
    The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level

    The Mycelium as a Network

    No full text
    The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level

    The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation

    No full text
    corecore