15 research outputs found

    Gendered dimensions of obesity in childhood and adolescence

    Get PDF
    BACKGROUND: The literature on childhood and adolescent obesity is vast. In addition to producing a general overview, this paper aims to highlight gender differences or similarities, an area which has tended not to be the principal focus of this literature. METHODS: Databases were searched using the terms 'obesity' and 'child', 'adolescent', 'teenager', 'youth', 'young people', 'sex', 'gender', 'masculine', 'feminine', 'male', 'female', 'boy' and 'girl' (or variations on these terms). In order to limit the potential literature, the main focus is on other reviews, both general and relating to specific aspects of obesity. RESULTS: The findings of genetic studies are similar for males and females, and differences in obesity rates as defined by body mass index are generally small and inconsistent. However, differences between males and females due to biology are evident in the patterning of body fat, the fat levels at which health risks become apparent, levels of resting energy expenditure and energy requirements, ability to engage in certain physical activities and the consequences of obesity for the female reproductive system. Differences due to society or culture include food choices and dietary concerns, overall physical activity levels, body satisfaction and the long-term psychosocial consequences of childhood and adolescent obesity. CONCLUSION: This review suggests differences between males and females in exposure and vulnerability to obesogenic environments, the consequences of child and adolescent obesity, and responses to interventions for the condition. A clearer focus on gender differences is required among both researchers and policy makers within this field

    Therapeutic success and efficacy of nonviral liposomal cDNA gene transfer to the skin in vivo is dose dependent

    No full text
    It is well documented that responses to growth factor treatment typically display bell-shaped dose responses that can significantly affect efficacy. Here we tested the hypothesis that nonviral liposomal gene delivery also displays this characteristic. We chose two different growth factors, keratinocyte growth factor (KGF) and insulin-like growth factor-I (IGF-I) CMV-driven transfecting constructs at three different concentrations and assessed efficacy on several physiological parameters that are descriptive of wound healing progress in a burn-wound healing model. Rats were given a 60% TBSA scald burn and randomly divided into one of seven groups to receive weekly subcutaneous injections of liposomes containing the cDNA for KGF (0.2 microg, 2.2 microg, or 22.2 microg), or liposomes containing the cDNA for IGF-I (0.2 microg, 2.2 microg, or 22.2 microg) at various concentrations, but constant liposome:DNA ratios and a LacZ gene (0.2 microg) CMV-driven construct for beta-galactosidase as vehicle and marker gene. Transfection was confirmed by histology for beta-galactosidase. Physiological efficacy was evaluated by measuring the wound healing parameters that define dermal and epidermal regeneration. Transfection products were found in the cytoplasm of rapidly dividing cells of the granulation tissue. Different doses of the nonviral cDNA gene transfer coding for KGF or IGF-I resulted in different outcomes for dermal and epidermal regeneration. There was a dose-dependent response to both growth factor gene transfers that was not dissimilar from that typically displayed by treatment with growth factor proteins. Both concentrations below and above the optimal concentration of DNA:liposomal preparations did not yield the results observed at the optimal concentration
    corecore