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Elevations in growth hormone and
glucagon-like peptide-2 levels on
admission are associated with increased
mortality in trauma patients
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Abstract

Background: Burn and trauma patients present a clinical challenge due to metabolic derangements and
hypermetabolism that result in a prolonged catabolic state with impaired healing and secondary complications,
including ventilator dependence. Previous work has shown that circulating levels of growth hormone (GH) are
predictive of mortality in critically ill adults, but few studies have examined the prognostic potential of GH levels in
adult trauma patients.

Methods: To investigate the utility of GH and other endocrine responses in the prediction of outcomes, we conducted a
prospective, observational study of adult burn and trauma patients. We evaluated the serum concentration of GH, insulin-
like growth factor 1 (IGF-1), IGF binding protein 3 (IGFBP-3), and glucagon-like peptide-2 (GLP-2) weekly for up to 6 weeks
in 36 adult burn and trauma patients admitted between 2010 and 2013.

Results: Non-survivors had significantly higher levels of GH and GLP-2 on admission than survivors.

Discussion: This study demonstrates that GH has potential as a predictor of mortality in critically ill trauma and burn
patients. Future studies will focus on not only the role of GH, but also GLP-2, which was shown to correlate with mortality
in this study with a goal of offering early, targeted therapeutic interventions aimed at decreasing mortality in the critically
injured.

Conclusions: GH and GLP-2 may have clinical utility for outcome prediction in adult trauma patients.
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Background
Severe trauma, burns, and critical illness affect millions of
people every year and present a significant challenge to
clinicians due to prolonged stays and metabolic derange-
ments. Burns and other major traumatic injuries lead to a
severe hypermetabolic response with elevated resting en-
ergy expenditure, insulin resistance, altered substrate use,
elevations in protein synthesis and breakdown, and a

negative nitrogen balance despite adequate nutrition [1].
The resulting catabolic state is characterized by impaired
wound healing, muscle weakness, immobility, and pro-
longed ventilator dependence [2–5]. Current treatment
approaches focus on managing the consequences of hy-
permetabolism through supportive therapy, but new ap-
proaches and advancements are needed to treat or
attenuate the post-trauma hypermetabolic response.
The growth hormone (GH) axis is a key metabolic regu-

lator that holds several potential targets for therapeutic
intervention [5, 6]. Activation of the hypothalamus causes
the release of growth hormone releasing hormone, which
then activates the pituitary to release GH that acts on a
number of targets, such as fat and liver, to increase the
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concentration of glucose and free fatty acids and the pro-
duction of additional hormones, including insulin-like
growth factor 1 (IGF-1) [7], which is highly protein bound,
most commonly to IGF binding protein 3 (IGFBP-3), but
when free activates the Akt signaling pathway to induce
cell proliferation and inhibit apoptosis. The GH axis re-
sponse to critical illness is biphasic, with acute and
chronic phases [8, 9]. The acute phase (5–10 days) is
marked by an actively secreting anterior pituitary with an
increase in GH levels and paradoxically decreased IGF-1
and IGFBP-3, secondary to GH resistance [9, 10]. Transi-
tion to the chronic phase is marked by a decrease in GH
secretion, persistently low IGF-1 and IGFBP-3, and con-
tinued protein catabolism [9, 11–13].
Therapeutic interest has focused on targeting the

chronic phase of the post-injury endocrine response, as
ongoing catabolism is associated with increased mor-
bidity and mortality [6, 14]. IGF-1 administration has
been shown to improve patient outcomes, such as
wound healing, muscle protein synthesis, and immune
function [15–18]. Recombinant human growth hor-
mone (rhGH) supplementation results in increased
IGF-1 and positive nitrogen balance in patients with
burns [19, 20], post-operative patients [21, 22], and the
critically ill [23]. Additional studies with rhGH have
shown improved morbidity and mortality in burn pa-
tients, including adolescents [24–30], and a recent
Cochrane review of available randomized, controlled
clinical trials of GH in patients with large burns con-
cluded that GH treatment results in accelerated healing
in both burn wounds and donor sites [31]. However, a
large, multi-center, double-blind, placebo-controlled
study showed that rhGH administration is associated
with an increased risk of mortality in critically ill, non-
trauma patients [32], suggesting that the target patient
population may be an important caveat for rhGH
intervention.
A clearer understanding of the timing and magnitude

of the endocrine response to severe trauma would in-
crease the likelihood of identifying targets for thera-
peutic intervention in order to minimize the impact of
the hypermetabolic response. Few studies have examined
the prognostic value of the GH axis in adult critically ill
patients. Recent work showed no significant differences
in GH levels among critically ill patients [33] whereas
others have demonstrated that GH levels on admission
were higher in non-survivors and were directly corre-
lated with severity of sepsis and Acute Physiology and
Chronic Health Evaluation II (APACHE II) score. Low
IGF-1 levels were also associated with higher mortality
[34], however IGFBP-3 was not correlated with APA-
CHE II scores or mortality [35]. Furthermore, GH levels
remained elevated after 24 h and at discharge or death
in non-survivors and, along with IL-6 levels and

APACHE II score, was an independent predictor of mor-
tality [35]. To evaluate the prognostic value of other
endocrine hormones, this study examined changes in
the concentrations of GH, IGF-1, IGFBP-3, and
glucagon-like peptide-2 (GLP-2) in adult burn and
trauma patients with severe injury.

Methods
Subjects
This prospective, observational study was conducted
under a protocol reviewed and approved by the Brooke
Army Medical Center Institutional Review Board and in
accordance with the approved protocol. Adults (≥18 years
old) were eligible for the study if they were admitted to
the Intensive Care Unit (ICU) at San Antonio Military
Medical Center (trauma) or United States Army Institute
of Surgical Research (burn) with a severe injury, defined
as trauma with injury severity score (ISS) >15 or burn cov-
ering ≥20 % of the total body surface area (TBSA). Pa-
tients with known endocrine disorders other than diabetes
mellitus were excluded. Delayed consent was used for sub-
ject enrollment in accordance with the approved study
procedures. Additionally, five healthy subjects were se-
lected as controls to establish uninjured values. Subject
demographics, injury information, and clinical outcomes
data were collected.

Sample collection
Blood samples were collected from existing central ven-
ous catheters, arterial lines, or intravenous lines for ana-
lysis of GH, IGF-1, IGFBP-3, and GLP-2 levels. A total
of 4 mL of blood was collected twice (morning and
evening) on admission (day 1) and on days 7, 14, 21, 28,
35, and 42, when possible. Samples were collected within
24 h of admission on all patients and for patients who
proceeded to the operating room on the day of admis-
sion, samples were collected prior to the operation.
Blood samples were centrifuged (1000 g, 15 min, room
temperature) and the serum was separated within
90 min of collection and aliquoted for storage at −80 °C
until analysis.

Hormone analysis
Serum samples were analyzed with commercially avail-
able ELISA kits for GH (DGH00, R&D Systems, Minne-
apolis, MN), IGF-1 (DG100, R&D Systems, Minneapolis,
MN), IGFBP-3 (DBG300, R&D Systems, Minneapolis,
MN), and GLP-2 (YK141, Yanaihara Institute, Shizuoka,
Japan) according to manufacturer instructions.

Statistical analysis
Continuous variables were analyzed using either the
Student’s t-test or Wilcoxon signed-rank test, based on the
results of the Shapiro-Wilks test of normality. Log-
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transformations were considered for right-skewed data, and
log-normally distributed data is presented as geometric
mean with 95 % confidence interval. Variables that passed
or failed the test for normality are presented as mean (±
standard deviation) or median (interquartile range), respect-
ively. Categorical variables were compared using Chi-
squared, Mann Whitney (when sample sizes were unequal),
or Fisher’s exact tests, as appropriate. Linear regression was
performed to determine an association between hormone
levels over time and other factors. P-values and overall
Pearson’s correlation coefficient were reported for all re-
gression models. Statistical significance was accepted at p <
0.05. All data were analyzed with SAS 9.1 (SAS, Cary, NC).

Results
A total of 36 subjects were enrolled in this study. A sum-
mary of the different injuries are shown in Table 1; more
detailed information on the subject demographics, detailed
injury information and clinical outcomes are available
(Additional file 1: Table S1). Subjects ranged from 18 to
74 years old (median 31.5) and were predominantly male
(81 %) civilians (81 %). Body mass index values ranged from
19.4 to 42.2 (median 28.6). Subjects were most commonly
injured in automotive crashes (14 motor vehicle and 3
motorcycle), assaults with or without gunshot wounds (5),
explosions/blasts with or without burns (5), and burns (5).
Average ISS was 29 ± 10.2 (range 9–57, median 27) and
average APACHE II score was 22.7 ± 9.8 (range 6–44, me-
dian 25). Subjects averaged 26.1 days in the hospital (range
4–124, median 17), 14.9 days in the ICU (range 1–62, me-
dian 11), 9.3 days on a ventilator (range 0–43, median 6),
and had an overall in-hospital mortality of 19 %.
Samples were collected from all 36 subjects upon admis-

sion (day 1) but due to factors such as length of stay, study
withdrawal, hospital discharge and mortality, weekly sam-
ples could not be collected for all subjects. Data was avail-
able from 21, 12, 9, 6, 4, and 2 subjects on days 7, 14, 21,
28, 35, and 42, respectively. Due to hormone variability and

reduced power over time, no temporal trends were detected
in any of the hormones evaluated. Likewise, subgroup ana-
lysis comparing burn patients with patients positive for
traumatic brain injury (TBI) and non-TBI trauma patients
revealed no significant correlations in hormone levels
(Table 2). Age was inversely correlated with average levels
of GH (p = 0.016, R2 = 16 %), IGF-1 (p = 0.0001, R2 = 35 %),
and IGFBP-3 (p = 0.003, R2 = 23 %), and males had signifi-
cantly higher levels of GLP-2 (p = 0.049) and IGF-1 (p =
0.01). Consistent with previous reports [35], non-survivors
had significantly higher GH levels on admission than survi-
vors (Fig. 1, p = 0.038). Furthermore, higher GLP-2 levels
on admission were associated with higher mortality (Fig. 2,
p = 0.016). As expected, ISS and APACHE II scores were
significantly associated with increased mortality (p = 0.035
and p = 0.004, respectively). Comparison of burn/trauma
ICU patients to healthy controls showed that, on average,
ICU patients had higher levels of GLP-2 (Fig. 3, p < 0.0001)
but lower levels of IGFBP-3 (Fig. 4, p = 0.011).

Discussion
Severe traumatic injuries, including burns, are a unique,
complex challenge to clinicians. Patients often demonstrate

Table 1 Injury information. Polytrauma patients experienced
more than one type of injury, therefore the total number of
injuries is greater than the number of patients

Type of injury Incidence (#)

Traumatic brain injury 16

Solid organ injury 11

Long bone fracture 8

Spinal cord injury/spinal fracture 10

Pelvic fracture 3

Rib fracture(s) 5

Burn 6

Othera 13
aincludes fractures other than long bones, pelvis or rib, pneumothorax, hollow
viscous injuries and diaphragm injuries

Table 2 Mean hormone levels comparing burn patients to non-
burned trauma patients positive for TBI with non-TBI trauma
patients

Hormone Burn TBI Non-TBI trauma

GHa 3.22 2.76 2.84

GLP-2b 1.16 1.23 1.15

IGF-1c 2.06 1.77 1.87

IGFBP-3d 3.41 3.24 3.27
ap = 0.0625, R2 = 10.9 %
bp = 0.293, R2 = 21.6 %
cp = 0.052, R2 = 10.9 %
dp = 0.252, R2 = 8.85 %

Fig. 1 Growth hormone (GH) concentration on admission (day 1) in
survivors and non-survivors of trauma. *, p < 0.05 by Mann-Whitney
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major alterations in metabolic and endocrine responses
that induce a host of physiological complications that often
require intensive care and multiple organ support. In
addition to established predictors of patient outcome, such
as ISS and APACHE II scores, prognostic indicators of sur-
vival or disease progression could allow for earlier targeted
intervention and improved patient outcomes. Furthermore,
the ability to triage patients and focus care, when resources
are limited, based on a combination of injury severity and
outcome predictors could improve survival and functional
recovery. In this study, the levels of GH, IGF-1, IGFBP-3,
and GLP-2 were tracked in 36 burn and trauma patients
over a 6 week period and compared with outcomes data
(hospital days, ICU days, ventilator days, and survival).
Non-survivors had significantly higher GH and GLP-2

levels, ISS and APACHE II scores on admission, and aver-
age GLP-2 levels than survivors. When compared with
healthy controls, ICU patients had higher levels of GLP-2
and IGFBP-3.
Few studies have evaluated the prognostic potential of

GH, IGF-1, IGFBP-3, or GLP-2 in trauma patients. A re-
cent study of 103 critically ill patients found that survivors
had significantly lower GH levels on admission than non-
survivors, with or without sepsis, and that GH levels remain
elevated in non-survivors after 24 h and at discharge or
death [35]. Similarly, dichotomizing patients into low (<25)
and high (≥25) risk based on APACHE II score revealed el-
evated GH levels in high risk patients. In fact, elevated GH
at admission was identified as an independent predictor of
mortality, and improved the prognostic accuracy of the
APACHE II score when used in combination. These data
are in agreement with the elevated GH levels seen in the 36
burn and trauma patients in the present study, and increase
the potential of GH as an indicator of mortality in critically
ill patients.
Therapeutic interest in attenuating the hypermetabolic

response after injury has led to evaluating the effect of
different therapies, such as insulin [9, 36], propranolol
[37], and IGF-1 [15–18], which has been shown to im-
prove patient outcomes such as wound healing, muscle
protein synthesis, and immune function. Significant dif-
ferences in IGF-1 levels between survivors and non-
survivors were not detected in this study, but this is
likely because of several limitations, including reduced
power from small sample size and patient attrition
throughout the 6 week study. The high patient attrition
rate also impairs the ability to reliably correlate the mea-
sured values with parameters such as length of stay, ICU
days, ventilator days and perhaps even survival. Studies

Fig. 2 Glucagon-like peptide-2 (GLP-2) concentration on admission
(day 1) in survivors and non-survivors of trauma. *, p < 0.05
by Mann-Whitney

Fig. 3 GLP-2 concentration on admission (day 1) in patients compared to healthy controls. *, p < 0.05 by Mann-Whitney
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have also explored supplementation with rhGH which
has been shown to increase IGF-1 levels, accelerate heal-
ing, and improve morbidity and mortality in burn pa-
tients in several studies [31].
The present study is in agreement with previous work

[35] that shows higher GH levels in critically ill trauma pa-
tients than uninjured controls. Furthermore, GH levels on
admission are correlated with outcome (Fig. 1) and serve
as an independent predictor for mortality [35], which sug-
gests that GH supplementation could be unnecessary or
potentially dangerous in some critically ill patients. This
could at least partly explain the results of a large multi-
center trial that showed an increased risk of mortality with
rhGH administration in non-trauma patients [32]. Add-
itional side effects of GH supplementation have been
noted to include hyperglycemia [31], sodium retention
leading to an increase in extracellular water [35], hypercal-
cemia and hypercalciuria [38, 39]. More work is needed to
identify the target patient population for rhGH adminis-
tration in order to maximize any potential benefit and
minimize potential complications of GH therapy in critic-
ally ill patients.

Conclusion
The treatment of severe trauma, burns, and critical illness
remains a challenge to clinicians, but the ability to predict
patient outcomes has impacted patient care to allow for
early intervention and improved outcomes. New markers
are needed to allow for more accurate, earlier predictions
of patient outcome, and to improve the delivery of preci-
sion medicine. To our knowledge, this is the first study to
identify GLP-2 as a novel prognostic indicator in trauma
patients. Additional work is needed in larger patient popu-
lations across multiple centers to increase the impact of
GLP-2, GH, and other clinically relevant hormones as po-
tential indicators of clinical outcome.

Additional file

Additional file 1: Table S1. Patient demographics, injury information, and
clinical outcomes. APACHE II = Acute Physiology and Chronic Health
Evaluation II, Civ = civilian, GSW = gunshot wound, IED = improvised
explosive device, ISS = Injury Severity Score, MCC = motorcycle crash, Mil =
military, MVC = motor vehicle collision, N = no, TBI = traumatic brain injury,
TBSA = total body surface area, Y = yes. (DOCX 23 kb)
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