13 research outputs found

    Improved derivatization protocol for simultaneous determination of alkylphenol ethoxylates and brominated flame retardants followed by gas chromatography – mass spectrometry analyses

    Get PDF
    An improved derivatization protocol for the simultaneous determination of alkylphenol ethoxylates and brominated flame retardants with heptafluorobutyric anhydride under triethylamine amine base was investigated. The derivatization reaction was completed in 30 min at 50°C using hexane as solvent. Under these conditions, it was observed that alkylphenol ethoxylates and tetrabromobisphenol A were derivatized successfully in the presence of hexabromocyclododecane, lower congeners of polybrominated biphenyls and polybrominated diphenyl ethers. The improved protocol was applied to recovery of analytes of interest from simulated water samples after solid phase extraction. The recoveries achieved were above 60%. The limit of detection and limit of quantification ranged from 0.01–0.20 μg/ℓ and 0.05–0.66 μg/ℓ, respectively.Keywords: Alkylphenol ethoxylates, brominated flame retardants, gas chromatography-mass spectrometry, heptafluorobutyric anhydride derivatization, simultaneous determinatio

    Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector

    No full text
    The presence of phthalate esters (PAEs) in the environment is not desirable and therefore, needs to be monitored. This study reports the first data on the concentration levels of PAEs in water and sediments of the Jukskei River catchment area, South Africa. The study was conducted during the summer and winter seasons of 2005. Liquid-liquid extraction (LLE) and Soxhlet extraction (SE) methods were optimized, evaluated and used to determine PAEs of interest in water (unfiltered and filtered) and sediments samples, respectively. Mean percentage recoveries in spiked doubly distilled water ranged from 100 ± 5.32 dimethyl phthalate (DMP) – 122 ± 0.46 di-2-ethylhexyl phthalate (DEHP) and 91.6 ± 1.93 diethyl phthalate (DEP) – 117 ± 4.80 dibutyl phthalate (DBP) in sediments. The concentration levels of PAEs studied in unfiltered environmental water samples were in the range of 0.04(± 0.00) (DMP) − 9.76(± 00.1) ng mL−1(DEHP) for PAEs and from 0.09 (± 0.01) (DMP) – 4.38 (± 0.06) ng mL−1(DEHP) for filtered environmental water samples. Concentration levels obtained in sediments were from 0.05 (0.00) (DMP) – 4910 (0.36) ng/gdw (DEHP). PAEs adsorbed on the sample bottle gave concentration levels of up to 0.10 (± 0.03) ng mL−1for some samples and no analyte was detected (ND) in some cases Generally, concentrations obtained were below the water quality guideline values of United States Environmental Protection Agency (USEPA)

    Determination of selected organochlorine pesticide (OCP) compounds from the Jukskei River catchment area in Gauteng, South Africa.

    No full text
    Organochlorine pesticides (OCPs) are continually detected in the environment due to their increasing applications in agriculture and industry. The presence of OCPs in the environment is not desirable since they are well known to have negative impact in humans, animals and birds. Thus, there has been a continual demand to monitor the presence of OCPs within the environment. Liquid-liquid extraction (LLE) and Soxhlet extraction (SE) methods (using dichloromethane as the extracting solvent,) were optimised and evaluated for the determination of these compounds in surface water (unfiltered and filtered) and sediment samples. The crude extracts obtained were subjected to column chromatography for clean-up. Thereafter, 1 µℓ of the cleaned extracts were injected into the GC equipped with ECD. Percentage recoveries obtained for OCPs ranged from 98.90±7.32 (2,4'-DDE) - 124.1±8.23 endosulfan II (ENDO II) % and from 98.99±5.30 (2,4'-DDE) - 121.1±0.38 (4,4'-DDE) % in spiked triply distilled water and sediment samples respectively. The levels of OCPs obtained in unfiltered environmental water samples ranged from 0.631±0.03 (γ-HCH) - 1 540±0.19 ng·mℓ-1 (4,4'-DDT) while levels in filtered water samples ranged from 0.895±0.01 (γ-HCH) - 9 089±0.08 ng·mℓ-1 (HEPTA). Levels of analysed OCPs obtained in sediments ranged from 0.266±0.01 (δ-HCH) - 22 914±2.85 ng·gdw-1 (2,4'-DDE). Analytes adsorbed on the sample bottles used for water samples collection gave levels which ranged from 0.01±0.01 - 1.06±0.02 ng·mℓ-1 for OCPs. The levels obtained from the catchment were significantly higher than the water criteria values recommended by USEPA and DWAF for the protection of the aquatic environment. Levels obtained were also higher than those of other studies conducted so far in South African aquatic environments. There is, therefore, a definite pollution of the Jukskei River catchment by the OCPs studied
    corecore