16 research outputs found

    Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry

    Get PDF
    Background: When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca 2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings: We have measured changes in intracellular Ca 2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance: Our findings identify important roles for subplasmalemmal actin fibers in the process of spermegg interaction and in the subsequent events related to fertilization: the generation of Ca 2+ signals, sperm penetration

    The Testicular and Epididymal Expression Profile of PLCζ in Mouse and Human Does Not Support Its Role as a Sperm-Borne Oocyte Activating Factor

    Get PDF
    Phospholipase C zeta (PLCζ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCζ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCζ by immunoblotting. In both human and mouse, the active isoform of PLCζ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCζ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCζ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCζ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCζ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCζ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCζ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides

    Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    Get PDF
    The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy.Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+.Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu

    Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20

    No full text
    Fertilizable mammalian oocytes are arrested at the second meiotic metaphase (mII) by the cyclinB-Cdc2 heterodimer, maturation promoting factor (MPF). MPF is stabilized via the activity of an unidentified cytostatic factor (CSF), thereby suspending meiotic progression until fertilization. We here present evidence that a conserved 71 kDa mammalian orthologue of Xenopus XErp1/Emi2, which we term endogenous meiotic inhibitor 2 (Emi2) is an essential CSF component. Depletion in situ of Emi2 by RNA interference elicited precocious meiotic exit in maturing mouse oocytes. Reduction of Emi2 released mature mII oocytes from cytostatic arrest, frequently inducing cytodegeneration. Mos levels autonomously declined to undetectable levels in mII oocytes. Recombinant Emi2 reduced the propensity of mII oocytes to exit meiosis in response to activating stimuli. Emi2 and Cdc20 proteins mutually interact and Cdc20 ablation negated the ability of Emi2 removal to induce metaphase release. Consistent with this, Cdc20 removal prevented parthenogenetic or sperm-induced meiotic exit. These studies show in intact oocytes that the interaction of Emi2 with Cdc20 links activating stimuli to meiotic resumption at fertilization and during parthenogenesis in mammals
    corecore