30 research outputs found
Direct Presentation Is Sufficient for an Efficient Anti-Viral CD8+ T Cell Response
The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines
Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster
<p>Abstract</p> <p>Background</p> <p>The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in <it>Drosophila </it>different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in <it>Drosophila </it>Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response.</p> <p>Results</p> <p>Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3<sup>rd </sup>instar larvae and we show that 20E-induced levels of <it>EcR </it>isoforms <it>EcR-RA, ER-RC</it>, and <it>EcR-RD/E </it>differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types.</p> <p>Conclusions</p> <p>We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.</p
Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism
To examine brain volumes in substructures associated with the behavioral features of children with FXS compared to children with idiopathic autism and controls. A cross-sectional study of brain substructures was conducted at the first time-point as part of an ongoing longitudinal MRI study of brain development in FXS. The study included 52 boys between 18–42 months of age with FXS and 118 comparison children (boys with autism-non FXS, developmental-delay, and typical development). Children with FXS and autistic disorder had substantially enlarged caudate volume and smaller amygdala volume; whereas those children with autistic disorder without FXS (i.e., idiopathic autism) had only modest enlargement in their caudate nucleus volumes but more robust enlargement of their amygdala volumes. Although we observed this double dissociation among selected brain volumes, no significant differences in severity of autistic behavior between these groups were observed. This study offers a unique examination of early brain development in two disorders, FXS and idiopathic autism, with overlapping behavioral features, but two distinct patterns of brain morphology. We observed that despite almost a third of our FXS sample meeting criteria for autism, the profile of brain volume differences for children with FXS and autism differed from those with idiopathic autism. These findings underscore the importance of addressing heterogeneity in studies of autistic behavior
Drosophila as a Model for MECP2 Gain of Function in Neurons
Methyl-CpG-binding protein 2 (MECP2) is a multi-functional regulator of gene expression. In humans loss of MECP2 function causes classic Rett syndrome, but gain of MECP2 function also causes mental retardation. Although mouse models provide valuable insight into Mecp2 gain and loss of function, the identification of MECP2 genetic targets and interactors remains time intensive and complicated. This study takes a step toward utilizing Drosophila as a model to identify genetic targets and cellular consequences of MECP2 gain-of function mutations in neurons, the principle cell type affected in patients with Rett-related mental retardation. We show that heterologous expression of human MECP2 in Drosophila motoneurons causes distinct defects in dendritic structure and motor behavior, as reported with MECP2 gain of function in humans and mice. Multiple lines of evidence suggest that these defects arise from specific MECP2 function. First, neurons with MECP2-induced dendrite loss show normal membrane currents. Second, dendritic phenotypes require an intact methyl-CpG-binding domain. Third, dendritic defects are amended by reducing the dose of the chromatin remodeling protein, osa, indicating that MECP2 may act via chromatin remodeling in Drosophila. MECP2-induced motoneuron dendritic defects cause specific motor behavior defects that are easy to score in genetic screening. In sum, our data show that some aspects of MECP2 function can be studied in the Drosophila model, thus expanding the repertoire of genetic reagents that can be used to unravel specific neural functions of MECP2. However, additional genes and signaling pathways identified through such approaches in Drosophila will require careful validation in the mouse model
Omics-based molecular techniques in oral pathology centred cancer: Prospect and challenges in Africa
: The completion of the human genome project and the accomplished milestones in the human
proteome project; as well as the progress made so far in computational bioinformatics and “big data” processing have
contributed immensely to individualized/personalized medicine in the developed world.At the dawn of precision medicine, various omics-based therapies and bioengineering can now be
applied accurately for the diagnosis, prognosis, treatment, and risk stratifcation of cancer in a manner that was
hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into
the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved
the profciency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate
details about disease disparity among diferent human populations are beginning to emerge. This would facilitate the
use of tailor-made novel theranostic methods based on emerging molecular evidences
The steroid hormone-regulated gene Broad Complex is required for dendritic growth of motoneurons during metamorphosis of Drosophila
Dendrites are subject to subtle modifications as well as extensive
remodeling during the assembly and maturation of neural circuits in a
wide variety of organisms. During metamorphosis Drosophila flight
motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth,
whereas MN5 differentiates de novo (Consoulas et al. [2002] J.
Neurosci. 22:49064917). Many cellular changes during metamorphosis are
triggered and orchestrated by the steroid hormone 20-hydroxyecdysone,
which initiates a cascade of coordinated gene expression. Broad Complex
(BRC), a primary response gene in the ecdysone cascade, encodes a family
of transcription factors (BRC-Z1-Z4) that are essential for metamorphic
reorganization of the central nervous system (CNS). Using neuron-filling
techniques that reveal cellular morphology with very high resolution, we
tested the hypothesis that BRC is required for metamorphic development
of MN1-MN5. Through a combination of loss-of-function mutant analyses,
genetic mapping, and transgenic rescue experiments, we found that 2Bc
function, mediated by BRC-Z3, is required selectively for motoneuron
dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for
soma expansion of MN5. In contrast, larval development and dendritic
regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins
are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its
effect in a non-cell-autonomous manner. The 2Bc mutants display no gross
defects in overall thoracic CNS structure, or in peripheral structures
such as target muscles or sensory neurons. Candidates for mediating the
effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic
inputs and non-neuronal CNS cells that interact with them through direct
contact or diffusible factors. (c) 2005 Wiley-Liss, Inc
Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc
DRONC is an apical Drosophila caspase essential for programmed cell death during fly development. During metamorphosis, dronc gene expression is regulated by the steroid hormone ecdysone, which also regulates the levels of a number of other critical cell death proteins. As DRONC protein levels are important in determining caspase activation and initiation of cell death, we have analyzed the regulation of the dronc promoter using transgenic flies expressing a LacZ reporter gene under the control of the dronc promoter. Our results indicate that dronc expression is highly dynamic during Drosophila development, and is controlled both spatially and temporally. We demonstrate that while a 2.3?kb dronc promoter region contains most of the information required for correct gene expression, a 1.1?kb promoter region is expressed in some tissues and not others. We further demonstrate that during larval-pupal metamorphosis, two ecdysone-induced transcription factors, Broad-Complex and E93, are required for correct dronc expression. Our data suggest that the dronc promoter is regulated in a highly complex manner, and provides an ideal system to explore the temporal and spatial regulation of gene expression driven by nuclear hormone receptors.T. J. Daish, D. Cakouros and S. Kuma