29 research outputs found

    Toward an Identification of Resources Influencing Habitat Use in a Multi-Specific Context

    Get PDF
    Interactions between animal behaviour and the environment are both shaping observed habitat use. Despite the importance of inter-specific interactions on the habitat use performed by individuals, most previous analyses have focused on case studies of single species. By focusing on two sympatric populations of large herbivores with contrasting body size, we went one step beyond by studying variation in home range size and identifying the factors involved in such variation, to define how habitat features such as resource heterogeneity, resource quality, and openness created by hurricane or forest managers, and constraints may influence habitat use at the individual level. We found a large variability among individual's home range size in both species, particularly in summer. Season appeared as the most important factor accounting for observed variation in home range size. Regarding habitat features, we found that (i) the proportion of area damaged by the hurricane was the only habitat component that inversely influenced roe deer home range size, (ii) this habitat type also influenced both diurnal and nocturnal red deer home range sizes, (iii) home range size of red deer during the day was inversely influenced by the biomass of their preferred plants, as were both diurnal and nocturnal core areas of the red deer home range, and (iv) we do not find any effect of resource heterogeneity on home range size in any case. Our results suggest that a particular habitat type (i.e. areas damaged by hurricane) can be used by individuals of sympatric species because it brings both protected and dietary resources. Thus, it is necessary to maintain the openness of these areas and to keep animal density quite low as observed in these hunted populations to limit competition between these sympatric populations of herbivores

    Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin

    No full text
    River networks, seen as ecological corridors featuring connected and hierarchical dendritic landscapes for animals and plants, present unique challenges and opportunities for testing biogeographical theories and macroecological laws(1). Although local and basin- scale differences in riverine fish diversity have been analysed as functions of energy availability and habitat heterogeneity(2), scale- dependent environmental conditions(3) and river discharge(4,5), a model that predicts a comprehensive set of system-wide diversity patterns has been hard to find. Here we show that fish diversity patterns throughout the Mississippi - Missouri River System are well described by a neutral metacommunity model coupled with an appropriate habitat capacity distribution and dispersal kernel. River network structure acts as an effective template for characterizing spatial attributes of fish biodiversity. We show that estimates of average dispersal behaviour and habitat capacities, objectively calculated from average runoff production, yield reliable predictions of large- scale spatial biodiversity patterns in riverine systems. The success of the neutral theory in two- dimensional forest ecosystems(6-8) and here in dendritic riverine ecosystems suggests the possible application of neutral metacommunity models in a diverse suite of ecosystems. This framework offers direct linkage from large- scale forcing, such as global climate change, to biodiversity patterns
    corecore