90 research outputs found
Protection by Anti-Ξ²-Glucan Antibodies Is Associated with Restricted Ξ²-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence
Anti-Ξ²-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective Ξ²-glucan epitope(s) and protection mechanisms, we studied two anti-Ξ²-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model
Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys
In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables
Orexin-1 Receptor Co-Localizes with Pancreatic Hormones in Islet Cells and Modulates the Outcome of Streptozotocin-Induced Diabetes Mellitus
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OXβ/β) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OXβ/β animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes
Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice
Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity β and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5β/β mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5β/β animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN β such as the dorsomedial nucleus and the ventromedial hypothalamus β cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake
Nesfatin-1/NUCB2 as a Potential New Element of Sleep Regulation in Rats.
STUDY OBJECTIVES: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance. DESIGN: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long 'rebound sleep'. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in 'deprived' and 'rebound' groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline. RESULTS: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during 'rebound' reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during 'rebound'. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep. CONCLUSIONS: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression
Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC2 receptors (Vipr2β/β) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC2 receptor expression; both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2β/β mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. Vipr2β/β SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2β/β Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2β/β cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2β/β mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2β/β animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 ΞΌK-arcmin with a typical angular resolution of 0.5Β° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes
- β¦