10 research outputs found

    G-quadruplex ligands exhibit differential G-tetrad selectivity.

    Get PDF
    A rapid and simple equilibrium-binding assay mediated by ligand-induced fluorescence quenching of fluorophore-labelled G-quadruplex (G4) structures enabled quantitative interrogation of mutually exclusive ligand binding interactions at opposed G-tetrads. This technique revealed that the ligands TmPyP4, PhenDC3, and PDS have differential chemotype-specific binding preferences for individual G-tetrads of a model genomic G4 structure.This work was supported by the following grants: Cancer Research UK Programme, BBSRC BB/K018043/1 and EPSRC EP/ K039520/1. We thank Dr Chris Lowe for his constructive comments and for proofreading the manuscript.This is the final published version. It was first made available by RSC at http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/c5cc02252e#!divAbstract

    Love-Hate ligands for high resolution analysis of strain in ultra-stable protein/small molecule interaction

    No full text
    The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin-biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: 'Love-Hate ligands'. The Love-Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1-1.6 Ã… resolution crystal structures of streptavidin bound to Love-Hate ligands. Striking distortion of streptavidin's binding contacts was found for these complexes. Hydrogen bonds to biotin's ureido and thiophene rings were preserved for all the ligands, but biotin's valeryl tail was distorted from the classic conformation. Streptavidin's L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love-Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity

    Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples

    No full text
    We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology

    C-Alkylation by Hydrogen Autotransfer Reactions

    No full text
    corecore