29 research outputs found
Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses
A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians
Mechanistic analogy: how microcosms explain nature
Microcosm studies of ecological processes have been criticized for being unrealistic. However, since lack of realism is inherent to all experimental science, if lack of realism invalidates microcosm models of ecological processes, then such lack of realism must either also invalidate much of the rest of experimental ecology or its force with respect to microcosm studies must derive from some other limitation of microcosm apparatus. We believe that the logic of the microcosm program for ecological research has been misunderstood. Here, we respond to the criticism that microcosm studies play at most a heuristic role in ecology with a new account of scientific experimentation developed specifically with ecology and other environmental sciences in mind. Central to our account are the concepts of model-based reasoning and analogical inference. We find that microcosm studies are sound when they serve as models for nature and when certain properties, referred to as the essential properties, are in positive analogy. By extension, our account also justifies numerous other kinds of ecological experimentation. These results are important because reliable causal accounts of ecological processes are necessary for sound application of ecological theory to conservation and environmental science. A severe sensitivity to reliable representation of causes is the chief virtue of the microcosm approach