224 research outputs found

    The Effect of Aggressive Versus Conventional Lipid-lowering Therapy on Markers of Inflammatory and Oxidative Stress

    Get PDF
    Purpose Recent trial results are in favor of aggressive lipid lowering using high dose statins in patients needing secondary prevention. It is unclear whether these effects are solely due to more extensive lipid lowering or the result of the potentially anti-inflammatory properties of statins. We aimed to determine whether aggressive compared with conventional statin therapy is more effective in reducing systemic markers of inflammation and oxidative stress. Materials and methods This was a multi-centre, double-blind, placebo-controlled trial. Patients with previous cardiovascular disease, who did not achieve low density lipoprotein (LDL) cholesterol levels <2.6 mmol/l on conventional statin therapy (simvastatin 40 mg) were randomized to continue with simvastatin 40 mg or to receive atorvastatin 40 mg for 8 weeks and thereafter atorvastatin 80 mg for the final 8 weeks (aggressive treatment). Lipids, C-reactive protein, soluble cellular adhesion molecules, neopterin, von Willebrand Factor, and antibodies against oxidized LDL were measured at baseline and after 16 weeks. Results Lipid levels decreased significantly in the aggressive treatment group (LDL-C reduction 20.8%; P <0.001), whereas a slight increase was observed in the conventional group (LDL-C increase 3.7%; P = 0.037). A significant reduction in antibodies against oxidized LDL was seen in the aggressive (13.4%; P <0.001) and the conventional (26.8%; P <0.001) group, but there was no difference between groups (P = 0.25). Furthermore, no significant differences in change in other biomarkers was observed between both groups. Conclusions This study does not support the hypothesis that a more profound reduction in inflammatory and oxidative stress contributes to the benefits of aggressive statin therapy

    Allelic Lineages of the Ficolin Genes (FCNs) Are Passed from Ancestral to Descendant Primates

    Get PDF
    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species

    A role for VEGF as a negative regulator of pericyte function and vessel maturation.

    Get PDF
    Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation

    Morpholino-Mediated Increase in Soluble Flt-1 Expression Results in Decreased Ocular and Tumor Neovascularization

    Get PDF
    BACKGROUND: Angiogenesis is a key process in several ocular disorders and cancers. Soluble Flt-1 is an alternatively spliced form of the Flt-1 gene that retains the ligand-binding domain, but lacks the membrane-spanning and intracellular kinase domains of the full-length membrane bound Flt-1 (mbFlt-1) protein. Thus, sFlt-1 is an endogenous inhibitor of VEGF-A mediated angiogenesis. Synthetic mopholino oligomers directed against splice site targets can modulate splice variant expression. We hypothesize that morpholino-induced upregulation of sFlt-1 will suppress angiogenesis in clinically relevant models of macular degeneration and breast cancer. METHODS AND FINDINGS: In vivo morpholino constructs were designed to target murine exon/intron 13 junction of the Flt-1 transcript denoted VEGFR1_MOe13; standard nonspecific morpholino was used as control. After nucleofection of endothelial and breast adenocarcinoma cell lines, total RNA was extracted and real-time RT-PCR performed for sFlt-1 and mbFlt-1. Intravitreal injections of VEGFR1_MOe13 or control were done in a model of laser-induced choroidal neovascularization and intratumoral injections were performed in MBA-MD-231 xenografts in nude mice. VEGFR1_MOe13 elevated sFlt-1 mRNA expression and suppressed mbFlt-1 mRNA expression in vitro in multiple cellular backgrounds (p<0.001). VEGFR1_MOe13 also elevated sFlt/mbFlt-1 ratio in vivo after laser choroidal injury 5.5 fold (p<0.001) and suppressed laser-induced CNV by 50% (p = 0.0179). This latter effect was reversed by RNAi of sFlt-1, confirming specificity of morpholino activity through up-regulation of sFlt-1. In the xenograft model, VEGFR1_MOe13 regressed tumor volume by 88.9%, increased sFlt-1 mRNA expression, and reduced vascular density by 50% relative to control morpholino treatment (p<0.05). CONCLUSIONS: Morpholino oligomers targeting the VEGFR1 mRNA exon/intron 13 junction promote production of soluble FLT-1 over membrane bound FLT-1, resulting in suppression of lesional volume in laser induced CNV and breast adenocarcinoma. Thus, morpholino manipulation of alternative splicing offers translational potential for therapy of angiogenic disorders

    Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy

    Get PDF
    Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs

    Why are tumour blood vessels abnormal and why is it important to know?

    Get PDF
    Tumour blood vessels differ from their normal counterparts for reasons that have received little attention. We report here that they are of at least six distinct types, we describe how each forms, and, looking forward, encourage the targeting of tumour vessel subsets that have lost their vascular endothelial growth factor-A (VEGF-A) dependency and so are likely unresponsive to anti-VEGF-A therapies

    Obesity, the Endocannabinoid System, and Bias Arising from Pharmaceutical Sponsorship

    Get PDF
    Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor.A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME); analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors.The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed

    Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis

    Get PDF
    Clinical evidence indicates that bone status is affected in patients with type 2 diabetes mellitus (T2DM). Regardless of normal or even high bone mineral density, T2DM patients have increased risk of fractures. One class of antidiabetic drugs, thiazolidinediones (TZDs), causes bone loss and further increases facture risk, placing TZDs in the category of drugs causing secondary osteoporosis. Risk factors for development of TZD-induced secondary osteoporosis are gender (women), age (elderly), and duration of treatment. TZDs exert their antidiabetic effects by activating peroxisome proliferator-activated receptor-Ξ³ (PPAR-Ξ³) nuclear receptor, which controls glucose and fatty acid metabolism. In bone, PPAR-Ξ³ controls differentiation of cells of mesenchymal and hematopoietic lineages. PPAR-Ξ³ activation with TZDs leads to unbalanced bone remodeling: bone resorption increases and bone formation decreases. Laboratory research evidence points toward a possible separation of unwanted effects of PPAR-Ξ³ on bone from its beneficial antidiabetic effects by using selective PPAR-Ξ³ modulators. This review also discusses potential pharmacologic means to protect bone from detrimental effects of clinically used TZDs (pioglitazone and rosiglitazone) by using combinational therapy with approved antiosteoporotic drugs, or by using lower doses of TZDs in combination with other antidiabetic therapy. We also suggest a possible orthopedic complication, not yet supported by clinical studies, of delayed fracture healing in T2DM patients on TZD therapy

    Erythroid Promoter Confines FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation

    Get PDF
    Fibroblast growth factor-2 (FGF2) has been demonstrated to be a promising osteogenic factor for treating osteoporosis. Our earlier study shows that transplantation of mouse Sca-1+ hematopoietic stem/progenitor cells that are engineered to express a modified FGF2 leads to considerable endosteal/trabecular bone formation, but it also induces adverse effects like hypocalemia and osteomalacia. Here we report that the use of an erythroid specific promoter, Ξ²-globin, leads to a 5-fold decrease in the ratio of serum FGF2 to the FGF2 expression in the marrow cavity when compared to the use of a ubiquitous promoter spleen focus-forming virus (SFFV). The confined FGF2 expression promotes considerable trabeculae bone formation in endosteum and does not yield anemia and osteomalacia. The avoidance of anemia in the mice that received Sca1+ cells transduced with FGF2 driven by the Ξ²-globin promoter is likely due to attenuation of high-level serum FGF2-mediated stem cell mobilization observed in the SFFV-FGF2 animals. The prevention of osteomalacia is associated with substantially reduced serum Fgf23/hypophosphatemia, and less pronounced secondary hyperparathyroidism. Our improved stem cell gene therapy strategy represents one step closer to FGF2-based clinical therapy for systemic skeletal augmentation
    • …
    corecore