74 research outputs found

    Experimental bond behaviour of GFRP and masonry bricks under impulsive loading

    Get PDF
    Fibre Reinforced Polymers have become a popular material for strengthening of masonry structures. The performance of this technique is strongly dependent on the bond between the FRP and the substrate. Understanding the strain rate effect on these materials and strengthening techniques is important for proper design and proper modelling of these systems under impacts or blast loads. This work aims to study the behaviour of the bond between GFRP and brick at different strain rates. A Drop Weight Impact Machine specially developed for pull-off tests (single shear tests) is used with different masses and different heights introducing different deformation rates. The strain rate effect on the failure mode, shear capacity and effective bond length is determined from the experimental results. Empirical relations of dynamic increase factors (DIF) for these materials and techniques are also presented.This work was performed under Project CH-SECURE (PTDC/EMC/120118/2010) funded by the Portuguese Foundation of Science and Technology – FCT. The authors acknowledge the support. The first author also acknowledges the support from his PhD FCT grant with the reference SFRH/BD/45436/2008

    Damage evaluation of ultra-high performance concrete columns after blast loads

    No full text
    As emerging advanced construction material, ultra-high performance concretes have seen increasing field applications over the past two decades to take advantages of their ultra-high mechanical strength and durability; yet the systematic study on its dynamic behaviour under impact and blast loads is not commonly seen. This article presents an experimental and numerical study on the static and dynamic behaviour of an existing ultra-high performance concrete material. Experimental study on its flexural behaviour under static loads is conducted and an inverse study is carried out to derive its uniaxial tensile constitutive law. The derived relationship is used in the material model in hydro-code LS-DYNA together with dynamic material properties to study ultra-high performance concrete columns under blast loads. The residual loading capacity of the column is studied and pressure–impulse diagrams for assessing the ultra-high performance concrete column damage under blast loads are proposed. Parametric study on effects of ultra-high performance concrete strength, column height, cross-section size and reinforcement ratio is performed and analytical equations are proposed for generating pressure–impulse diagrams for generic ultra-high performance concrete columns

    Development of a simplified numerical method for structural response analysis to blast load

    Get PDF
    The response of structural concrete elements under extremely short duration dynamic loads is of great concern nowadays. The most prevailing method to this problem is based on SDOF simplification. It is well known that the SDOF model can reliably predict the overall structural component response if the response follows predominantly a predefined damage mode such as shear or flexural mode. However, it cannot reliably predict localized failure of structures. Moreover, reliable deflection shape and damage criterion, which are critical for developing the equivalent SDOF model, are difficult to define. Therefore, although most design and analysis are still based on SDOF approach, more and more analyses are conducted with detailed Finite Element (FE) modelling. However, due to the short time duration as well as the huge loading magnitude, it is extremely difficult and time consuming to perform FE structural response analysis to blast loads, even with modern computer power. In this paper, a numerical approach, which substantially reduces the modelling and computational effort in analysing structural responses to blast load, is presented. Based on the short duration of blast load, the structural response is divided into two parts: forced vibration phase and free vibration phase. In the proposed method, the response during the forced vibration phase is approximately solved using the SDOF approach. Using the estimated response quantities at the end of the forced vibration phase as the initial conditions, a detail FE model in LS-DYNA is established and free vibration response is solved. This approach, while yielding reasonably accurate response calculations, substantially reduces the modelling and computational effort. To demonstrate the method, a reinforced concrete beam is analysed using both the conventional detailed FE modelling and the proposed approach. Comparisons of the numerical results from the two methods demonstrate the reliability of the proposed method. Compared to the detailed FE modelling, the proposed method requires only a rather coarse FE mesh, and can use a larger integration time step for free vibration calculations. Therefore, it requires less than 5% of the computational time to predict the structural responses as compared to the detailed FE modelling approach

    Failure and impact resistance analysis of plain and fiber-reinforced-polymer confined concrete cylinders under axial impact loads

    No full text
    This study conducts an experimental and numerical investigation on the failure and impact resistance of plain and fiber-reinforced polymer-confined concrete. The impact resistance of concrete cylinders wrapped with different types of fibers including carbon fiber and glass fiber is examined. Drop-weight tests are utilized to conduct the impact tests while the numerical simulation is conducted using LS-DYNA. The experimental and numerical results have proved that fiber-reinforced polymer can be efficiently used to improve the impact resistance of concrete cylinders. In general, fiber-reinforced polymer ruptures at a lower strain than those in static tests and the rupture strain of glass fiber is much higher than that of carbon fiber. The findings in the experimental tests are confirmed by the numerical results. Glass fiber, therefore, exhibits a much better performance than carbon fiber. It is recommended to use glass fiber to enhance the impact resistance of concrete structures strengthened with fiber-reinforced polymer. In addition, the stress evolution of the specimens is analyzed to investigate the failure mechanism

    Concrete Structures Under Blast Loading Dynamic Response, Damage, and Residual Strength

    No full text
    • …
    corecore