67 research outputs found

    Pathogenesis of bovine spongiform encephalopathy in sheep

    Get PDF
    The pathogenesis of bovine spongiform encephalopathy (BSE) in sheep was studied by immunohistochemical detection of scrapie-associated prion protein (PrPSc) in the gastrointestinal, lymphoid and neural tissues following oral inoculation with BSE brain homogenate. First accumulation of PrPSc was detected after 6 months in the tonsil and the ileal Peyer’s patches. At 9 months postinfection, PrPSc accumulation involved all gut-associated lymphoid tissues and lymph nodes as well as the spleen. At this time point, PrPSc accumulation in the peripheral neural tissues was first seen in the enteric nervous system of the caudal jejunum and ileum and in the coeliac-mesenteric ganglion. In the central nervous system, PrPSc was first detected in the dorsal motor nucleus of the nervus Vagus in the medulla oblongata and in the intermediolateral column in the spinal cord segments T7–L1. At subsequent time points, PrPSc was seen to spread within the lymphoid system to also involve all non-gut-associated lymphoid tissues. In the enteric nervous system, further spread of PrPSc involved the neural plexi along the entire gastrointestinal tract and in the CNS the complete neuraxis. These findings indicate a spread of the BSE agent in sheep from the enteric nervous system through parasympathetic and sympathetic nerves to the medulla oblongata and the spinal cord

    Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

    Get PDF
    Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Generalized cerebral atrophy seen on MRI in a naturally exposed animal model for creutzfeldt-jakob disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic resonance imaging has been used in the diagnosis of human prion diseases such as sCJD and vCJD, but patients are scanned only when clinical signs appear, often at the late stage of disease. This study attempts to answer the questions "Could MRI detect prion diseases before clinical symptoms appear?, and if so, with what confidence?"</p> <p>Methods</p> <p>Scrapie, the prion disease of sheep, was chosen for the study because sheep can fit into a human sized MRI scanner (and there were no large animal MRI scanners at the time of this study), and because the USDA had, at the time of the study, a sizeable sample of scrapie exposed sheep, which we were able to use for this purpose. 111 genetically susceptible sheep that were naturally exposed to scrapie were used in this study.</p> <p>Results</p> <p>Our MRI findings revealed no clear, consistent hyperintense or hypointense signal changes in the brain on either clinically affected or asymptomatic positive animals on any sequence. However, in all 37 PrP<sup>Sc </sup>positive sheep (28 asymptomatic and 9 symptomatic), there was a greater ventricle to cerebrum area ratio on MRI compared to 74 PrP<sup>Sc </sup>negative sheep from the scrapie exposed flock and 6 control sheep from certified scrapie free flocks as defined by immunohistochemistry (IHC).</p> <p>Conclusions</p> <p>Our findings indicate that MRI imaging can detect diffuse cerebral atrophy in asymptomatic and symptomatic sheep infected with scrapie. Nine of these 37 positive sheep, including 2 one-year old animals, were PrP<sup>Sc </sup>positive only in lymph tissues but PrP<sup>Sc </sup>negative in the brain. This suggests either 1) that the cerebral atrophy/neuronal loss is not directly related to the accumulation of PrP<sup>Sc </sup>within the brain or 2) that the amount of PrP<sup>Sc </sup>in the brain is below the detectable limits of the utilized immunohistochemistry assay. The significance of these findings remains to be confirmed in human subjects with CJD.</p

    Detection and Localisation of PrPSc in the Liver of Sheep Infected with Scrapie and Bovine Spongiform Encephalopathy

    Get PDF
    Prions are largely contained within the nervous and lymphoid tissue of transmissible spongiform encephalopathy (TSE) infected animals. However, following advances in diagnostic sensitivity, PrPSc, a marker for prion disease, can now be located in a wide range of viscera and body fluids including muscle, saliva, blood, urine and milk, raising concerns that exposure to these materials could contribute to the spread of disease in humans and animals. Previously we demonstrated low levels of infectivity in the liver of sheep experimentally challenged with bovine spongiform encephalopathy. In this study we show that PrPSc accumulated in the liver of 89% of sheep naturally infected with scrapie and 100% of sheep challenged with BSE, at both clinical and preclinical stages of the disease. PrPSc was demonstrated in the absence of obvious inflammatory foci and was restricted to isolated resident cells, most likely Kupffer cells

    Comparative evidence for a link between Peyer's patch development and susceptibility to transmissible spongiform encephalopathies

    Get PDF
    BACKGROUND: Epidemiological analyses indicate that the age distribution of natural cases of transmissible spongiform encephalopathies (TSEs) reflect age-related risk of infection, however, the underlying mechanisms remain poorly understood. Using a comparative approach, we tested the hypothesis that, there is a significant correlation between risk of infection for scrapie, bovine spongiform encephalopathy (BSE) and variant CJD (vCJD), and the development of lymphoid tissue in the gut. METHODS: Using anatomical data and estimates of risk of infection in mathematical models (which included results from previously published studies) for sheep, cattle and humans, we calculated the Spearman's rank correlation coefficient, r(s), between available measures of Peyer's patch (PP) development and the estimated risk of infection for an individual of the corresponding age. RESULTS: There was a significant correlation between the measures of PP development and the estimated risk of TSE infection; the two age-related distributions peaked in the same age groups. This result was obtained for each of the three host species: for sheep, surface area of ileal PP tissue vs risk of infection, r(s )= 0.913 (n = 19, P < 0.001), and lymphoid follicle density vs risk of infection, r(s )= 0.933 (n = 19, P < 0.001); for cattle, weight of PP tissue vs risk of infection, r(s )= 0.693 (n = 94, P < 0.001); and for humans, number of PPs vs risk of infection, r(s )= 0.384 (n = 46, P = 0.008). In addition, when changes in exposure associated with BSE-contaminated meat were accounted for, the two age-related patterns for humans remained concordant: r(s )= 0.360 (n = 46, P = 0.014). CONCLUSION: Our findings suggest that, for sheep, cattle and humans alike there is an association between PP development (or a correlate of PP development) and susceptibility to natural TSE infection. This association may explain changes in susceptibility with host age, and differences in the age-susceptibility relationship between host species

    Diagnosis of multisystem inflammatory syndrome in children by a whole-blood transcriptional signature

    Get PDF
    BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C

    Prions in Milk from Ewes Incubating Natural Scrapie

    Get PDF
    Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 µg of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species

    Exosome-Producing Follicle Associated Epithelium Is Not Involved in Uptake of PrPd from the Gut of Sheep (Ovis aries): An Ultrastructural Study

    Get PDF
    In natural or experimental oral scrapie infection of sheep, disease associated prion protein (PrPd) often first accumulates in Peyer's patch (PP) follicles. The route by which infectivity reaches the follicles is unknown, however, intestinal epithelial cells may participate in intestinal antigenic presentation by delivering exosomes as vehicles of luminal antigens. In a previous study using an intestinal loop model, following inoculation of scrapie brain homogenate, inoculum associated PrPd was detected by light microscopy shortly (15 minutes to 3.5 hours) after inoculation in the villous lacteals and sub-mucosal lymphatics. No PrPd was located within the follicle-associated epithelium (FAE), sub-FAE domes or the PP follicles. To evaluate this gut loop model and the transportation routes in more detail, we used electron microscopy (EM) to study intestinal tissues exposed to scrapie or control homogenates for 15 minutes to 10 days. In addition, immuno-EM was used to investigate whether exosomes produced in the FAE may possess small amounts of PrPd that were not detectable by light microscopy. This study showed that the integrity of the intestinal epithelium was sustained in the intestinal loop model. Despite prominent transcytotic activity and exosome release from the FAE of the ileal PP in sheep, these structures were not associated with transportation of PrPd across the mucosa. The study did not determine how infectivity reaches the follicles of PPs. The possibility that the infectious agent is transported across the FAE remains a possibility if it occurs in a form that is undetectable by the methods used in this study. Infectivity may also be transported via lymph to the blood and further to all other lymphoid tissues including the PP follicles, but the early presence of PrPd in the PP follicles during scrapie infection argues against such a mechanism
    corecore