31 research outputs found

    Pigment epithelium-derived factor protects retinal ganglion cells

    Get PDF
    BACKGROUND: Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors. RESULTS: Cultured adult rat RGCs exposed to glutamate for 3 days showed signs of cytotoxicity and death. The toxic effect of glutamate was concentration-dependent (EC(50 )= 31 μM). In the presence of 100 μM glutamate, RGC number decreased to 55 ± 4% of control (mean ± SEM, n = 76; P < 0.001). The glutamate effect was completely eliminated by MK801, an NMDA receptor antagonist. Trophic factor withdrawal also caused a similar loss of RGCs (54 ± 4%, n = 60, P < 0.001). PEDF protected against both insults with EC(50 )values of 13.6 ng/mL (glutamate) and 3.4 ng/mL (trophic factor withdrawal), respectively. At 100 ng/mL, PEDF completely protected the cells from both insults. Inhibitors of the nuclear factor κB (NFκB) and extracellular signal-regulated kinases 1/2 (ERK1/2) significantly reduced the protective effects of PEDF. CONCLUSION: We demonstrated that PEDF potently and efficaciously protected adult rat RGCs from glutamate- and trophic factor withdrawal-mediated cytotoxicity, via the activation of the NFκB and ERK1/2 pathways. The neuroprotective effect of PEDF represents a novel approach for potential treatment of retinopathies, such as glaucoma

    AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression <it>in vivo</it>. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy.</p> <p>Methods</p> <p>Recombinant AAV<sub>2 </sub>encoding hPEDF (rAAV<sub>2</sub>-hPEDF) was constructed and produced, and then was assigned for <it>in vitro </it>and <it>in vivo </it>experiments. Conditioned medium from cells infected with rAAV<sub>2</sub>-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV<sub>2</sub>-hPEDF. Therapeutic efficacy of rAAV<sub>2</sub>-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites.</p> <p>Results</p> <p>rAAV<sub>2</sub>-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV<sub>2</sub>-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV<sub>2</sub>-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs <it>in vitro</it>. Furthermore, in CRPC mouse model, rAAV<sub>2</sub>-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV<sub>2</sub>-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV<sub>2</sub>-hPEDF-treated mice were significant higher than those in rAAV<sub>2</sub>-null or normal saline (NS) groups.</p> <p>Conclusions</p> <p>Thus, our results suggest that rAAV<sub>2</sub>-hPEDF may be a potential candidate as an antiangiogenic therapy agent.</p

    Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice

    No full text
    Experimental lesions have been used widely to induce motoneuron (MN) degeneration as a model to test the ability of different trophic molecules to prevent lesion-induced alterations. However, the morphological mechanisms of spinal MN death following different types of lesions is not clear at the present time. In this study, we have characterized the morphological characteristics of MN cell death by examining DNA fragmentation and the ultrastructural and light microscopic morphological features of MNs following different types of spinal nerve injury (i.e., axotomy and avulsion) in the developing and adult mouse. In neonatal mice, axotomy induced cell death as well as the atrophy of MNs that survived the injury. DNA fragmentation could be detected by using the terminal deoxynucleotidyl transferase (TUNEL) method during the cell death process following neonatal axotomy, whereas TUNEL labeling was not observed following either neonatal or adult avulsion. However, with the exception of TUNEL labeling, the morphological characteristics of MN death following neonatal axotomy and avulsion were similar, and both resembled most closely the form of programmed cell death termed cytoplasmic or type 3B, which exhibits similarities as well as differences with currently accepted definitions of apoptosis. By contrast, adult avulsion resulted in a type of degeneration that resembled necrosis more closely. However, even there, the morphology was mixed, showing characteristics of both apoptosis and necrosis. These results indicate that the mode of MN degeneration is complex and is related to developmental age and type of lesion.link_to_subscribed_fulltex

    The paralysé (par) mouse neurological mutation maps to a 9 Mbp (4 cM) interval of mouse chromosome 18

    No full text
    The Paralysé mutation is a spontaneous neuromuscular mutation, first observed in 1980 at the Pasteur Institute, which is transmitted by the autosomal recessive par allele. Affected homozygote par/par mice rarely survive beyond 16 days of age and at the end of their life they are emaciated and completely paralyzed. Several concordant histological and physiological observations indicate that mutant mice might be good models for studying early-onset human motor neuron diseases such as spinal muscular atrophy. Linkage analysis using a set of molecular markers and two F2 crosses indicate that the mutation maps to mouse chromosome 18 in a region spanning 4 cM (or 9 megabase pairs, Mbp) between the microsatellites D18Mit140 and D18Mit33. These results positioned the par locus in a region homologous to human chromosome 18p11.22 to 18q21.32
    corecore