10 research outputs found

    Thermodynamics as a theory of decision-making with information processing costs

    Full text link
    Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we propose an information-theoretic formalization of bounded rational decision-making where decision-makers trade off expected utility and information processing costs. Such bounded rational decision-makers can be thought of as thermodynamic machines that undergo physical state changes when they compute. Their behavior is governed by a free energy functional that trades off changes in internal energy-as a proxy for utility-and entropic changes representing computational costs induced by changing states. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known concepts from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss the relation to satisficing decision-making procedures as well as links to existing theoretical frameworks and human decision-making experiments that describe deviations from expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to axiomatically derive and interpret the thermodynamic free energy as a model of bounded rational decision-making.Comment: 26 pages, 5 figures, (under revision since February 2012

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity

    A functional inference for multivariate current status data with mismeasured covariate

    No full text
    [[abstract]]Covariate measurement error problems have been recently studied for current status failure time data but not yet for multivariate current status data. Motivated by the three-hypers dataset from a health survey study, where the failure times for three-hypers (hyperglycemia, hypertension, hyperlipidemia) are subject to current status censoring and the covariate self-reported body mass index may be subject to measurement error, we propose a functional inference method under the proportional odds model for multivariate current status data with mismeasured covariates. The new proposal utilizes the working independence strategy to handle correlated current status observations from the same subject, as well as the conditional score approach to handle mismeasured covariate without specifying the covariate distribution. The asymptotic theory, together with a stable computation procedure combining the Newton–Raphson and self-consistency algorithms, is established for the proposed estimation method. We evaluate the method through simulation studies and illustrate it with three-hypers data.[[notice]]補正完

    Literatur

    No full text
    corecore