96 research outputs found

    Prioritizing Emerging Zoonoses in The Netherlands

    Get PDF
    Background: To support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands. Methodology/Principal Findings: A risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control. Conclusions/Significance: Pathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are key targets for development of early warning and surveillance.Infrastructures, Systems and ServicesTechnology, Policy and Managemen

    Variability of Bio-Clinical Parameters in Chinese-Origin Rhesus Macaques Infected with Simian Immunodeficiency Virus: A Nonhuman Primate AIDS Model

    Get PDF
    BACKGROUND: Although Chinese-origin Rhesus macaques (Ch RhMs) infected with simian immunodeficiency virus (SIV) have been used for many years to evaluate the efficacy of AIDS vaccines and therapeutics, the bio-clinical variability of such a nonhuman primate AIDS model was so far not established. METHODOLOGY/PRINCIPAL FINDINGS: By randomizing 150 (78 male and 72 female) Ch RhMs with diverse MHC class I alleles into 3 groups (50 animals per group) challenged with intrarectal (i.r.) SIVmac239, intravenous (i.v.) SIVmac239, or i.v. SIVmac251, we evaluated variability in bio-clinical endpoints for 118 weeks. All SIV-challenged Ch RhMs became seropositive for SIV during 1-2 weeks. Plasma viral load (VL) peaked at weeks 1-2 and then declined to set-point levels as from week 5. The set-point VL was 30 fold higher in SIVmac239 (i.r. or i.v.)-infected than in SIVmac251 (i.v.)-infected animals. This difference in plasma VL increased overtime (>100 fold as from week 68). The rates of progression to AIDS or death were more rapid in SIVmac239 (i.r. or i.v.)-infected than in SIVmac251 (i.v.)-infected animals. No significant difference in bio-clinical endpoints was observed in animals challenged with i.r. or i.v. SIVmac239. The variability (standard deviation) in peak/set-point VL was nearly one-half lower in animals infected with SIVmac239 (i.r. or i.v.) than in those infected with SIVmac251 (i.v.), allowing that the same treatment-related difference can be detected with one-half fewer animals using SIVmac239 than using SIVmac251. CONCLUSION/SIGNIFICANCE: These results provide solid estimates of variability in bio-clinical endpoints needed when designing studies using the Ch RhM SIV model and contribute to the improving quality and standardization of preclinical studies

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    Initial Commitment to Pre-Exposure Prophylaxis and Circumcision for HIV Prevention amongst Indian Truck Drivers

    Get PDF
    Studies of HIV prevention interventions such as pre-exposure prophylaxis (PREP) and circumcision in India are limited. The present study sought to investigate Indian truck-drivers initial commitment to PREP and circumcision utilizing the AIDS Risk Reduction Model. Ninety truck-drivers completed an in-depth qualitative interview and provided a blood sample for HIV and HSV-2 testing. Truck-drivers exhibited low levels of initial commitment towards PREP and even lower for circumcision. However, potential leverage points for increasing commitment were realized in fear of infecting family rather than self, self-perceptions of risk, and for PREP focusing on cultural beliefs towards medication and physicians. Cost was a major barrier to both HIV prevention interventions. Despite these barriers, our findings suggest that the ARRM may be useful in identifying several leverage points that may be used by peers, health care providers and public health field workers to enhance initial commitment to novel HIV prevention interventions in India

    Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperβ

    Get PDF
    The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution

    Autoimmune Neuromuscular Disorders in Childhood

    Get PDF
    Autoimmune neuromuscular disorders in childhood include Guillain-Barré syndrome and its variants, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), juvenile myasthenia gravis (JMG), and juvenile dermatomyositis (JDM), along with other disorders rarely seen in childhood. In general, these diseases have not been studied as extensively as they have been in adults. Thus, treatment protocols for these diseases in pediatrics are often based on adult practice, but despite the similarities in disease processes, the most widely used treatments have different effects in children. For example, some of the side effects of chronic steroid use, including linear growth deceleration, bone demineralization, and chronic weight issues, are more consequential in children than in adults. Although steroids remain a cornerstone of therapy in JDM and are useful in many cases of CIDP and JMG, other immunomodulatory therapies with similar efficacy may be used more frequently in some children to avoid these long-term sequelae. Steroids are less expensive than most other therapies, but chronic steroid therapy in childhood may lead to significant and costly medical complications. Another example is plasma exchange. This treatment modality presents challenges in pediatrics, as younger children require central venous access for this therapy. However, in older children and adolescents, plasma exchange is often feasible via peripheral venous access, making this treatment more accessible than might be expected in this age group. Intravenous immunoglobulin also is beneficial in several of these disorders, but its high cost may present barriers to its use in the future. Newer steroid-sparing immunomodulatory agents, such as azathioprine, tacrolimus, mycophenolate mofetil, and rituximab, have not been studied extensively in children. They show promising results from case reports and retrospective cohort studies, but there is a need for comparative studies looking at their relative efficacy, tolerability, and long-term adverse effects (including secondary malignancy) in children

    HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV

    Get PDF
    It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infectio

    Role of CCL3L1-CCR5 Genotypes in the Epidemic Spread of HIV-1 and Evaluation of Vaccine Efficacy

    Get PDF
    Polymorphisms in CCR5, the major coreceptor for HIV, and CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine, are determinants of HIV-AIDS susceptibility. Here, we mathematically modeled the potential impact of these genetic factors on the epidemic spread of HIV, as well as on its prevention.Ro, the basic reproductive number, is a fundamental concept in explaining the emergence and persistence of epidemics. By modeling sexual transmission among HIV+/HIV- partner pairs, we find that Ro estimates, and concordantly, the temporal and spatial patterns of HIV outgrowth are highly dependent on the infecting partners' CCL3L1-CCR5 genotype. Ro was least and highest when the infected partner possessed protective and detrimental CCL3L1-CCR5 genotypes, respectively. The modeling data indicate that in populations such as Pygmies with a high CCL3L1 gene dose and protective CCR5 genotypes, the spread of HIV might be minimal. Additionally, Pc, the critical vaccination proportion, an estimate of the fraction of the population that must be vaccinated successfully to eradicate an epidemic was <1 only when the infected partner had a protective CCL3L1-CCR5 genotype. Since in practice Pc cannot be >1, to prevent epidemic spread, population groups defined by specific CCL3L1-CCR5 genotypes might require repeated vaccination, or as our models suggest, a vaccine with an efficacy of >70%. Further, failure to account for CCL3L1-CCR5-based genetic risk might confound estimates of vaccine efficacy. For example, in a modeled trial of 500 subjects, misallocation of CCL3L1-CCR5 genotype of only 25 (5%) subjects between placebo and vaccine arms results in a relative error of approximately 12% from the true vaccine efficacy.CCL3L1-CCR5 genotypes may impact on the dynamics of the HIV epidemic and, consequently, the observed heterogeneous global distribution of HIV infection. As Ro is lowest when the infecting partner has beneficial CCL3L1-CCR5 genotypes, we infer that therapeutic vaccines directed towards reducing the infectivity of the host may play a role in halting epidemic spread. Further, CCL3L1-CCR5 genotype may provide critical guidance for optimizing the design and evaluation of HIV-1 vaccine trials and prevention programs
    corecore