11 research outputs found

    Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia

    Get PDF
    © The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The file attached is the published version of the article

    Studying Scale-Up and Spread as Social Practice: Theoretical Introduction and Empirical Case Study

    No full text
    Background: Health and care technologies often succeed on a small scale but fail to achieve widespread use (scale-up) or become routine practice in other settings (spread). One reason for this is under-theorization of the process of scale-up and spread, for which a potentially fruitful theoretical approach is to consider the adoption and use of technologies as social practices. Objective: This study aimed to use an in-depth case study of assisted living to explore the feasibility and usefulness of a social practice approach to explaining the scale-up of an assisted-living technology across a local system of health and social care. Methods: This was an individual case study of the implementation of a Global Positioning System (GPS) “geo-fence” for a person living with dementia, nested in a much wider program of ethnographic research and organizational case study of technology implementation across health and social care (Studies in Co-creating Assisted Living Solutions [SCALS] in the United Kingdom). A layered sociological analysis included micro-level data on the index case, meso-level data on the organization, and macro-level data on the wider social, technological, economic, and political context. Data (interviews, ethnographic notes, and documents) were analyzed and synthesized using structuration theory. Results: A social practice lens enabled the uptake of the GPS technology to be studied in the context of what human actors found salient, meaningful, ethical, legal, materially possible, and professionally or culturally appropriate in particular social situations. Data extracts were used to illustrate three exemplar findings. First, professional practice is (and probably always will be) oriented not to “implementing technologies” but to providing excellent, ethical care to sick and vulnerable individuals. Second, in order to “work,” health and care technologies rely heavily on human relationships and situated knowledge. Third, such technologies do not just need to be adopted by individuals; they need to be incorporated into personal habits and collaborative routines (both lay and professional). Conclusions: Health and care technologies need to be embedded within sociotechnical networks and made to work through situated knowledge, personal habits, and collaborative routines. A technology that “works” for one individual in a particular set of circumstances is unlikely to work in the same way for another in a different set of circumstances. We recommend the further study of social practices and the application of co-design principles. However, our findings suggest that even if this occurs, the scale-up and spread of many health and care technologies will be neither rapid nor smooth

    Designing Socio-Technical Systems: A Multi-team Case Study

    No full text
    Technical system design processes are typically based on systems engineering vee models where designers move between functional and physical domains as they develop detailed designs of the overall system and its sub-systems and component parts. The movements between the functional and physical domains are informed by the core activities of any design process: synthesis, description, analysis and simulation, and decision-making. However, delivering socio-technical systems design mindsets, such as those needed to design multi-team systems, requires a new branch of systems science that integrates human behavior into system behavior. Design processes built on such a science would allow system designers to compare alternative solutions in terms of their anticipated performance and consider different options with respect to functions carried out by humans and machines. In this chapter we use a systems design process vee model and apply it to a case study that involves the design of a multi-team customer service system. Both the application of the vee model (i.e., the proposed design process) and the results of its application (i.e., the multi-team customer service system) can be regarded as socio-technical systems and are used to illustrate and elaborate on Clegg’s (Appl Ergon 31(5):463–477, 2000) socio-technical principles for system design. On this basis, we provide a practical framework for designing socio-technical systems and identify requirements for developing future methods and tools to support this process
    corecore