85 research outputs found

    A tale of two towns: A comparative study exploring the possibilities and pitfalls of social capital among people seeking recovery from substance misuse

    Get PDF
    Background: Social capital has become an influential concept in debating and understanding the modern world. Within the drug and alcohol sector, the concept of ‘recovery capital’ has gained traction with researchers suggesting that people who have access to such capital are better placed to overcome their substance use-related problems than those who do not (Cloud and Granfield, 2008), leading to requests for interventions that focus on building social capital networks (Neale & Stevenson, 2015). While accepting that the concept of social capital has enormous potential for addressing the problems associated with drug use, this paper also considers its ‘dark side’. Methods: Data were drawn from semi-structured interviews with 180 participants including 135 people who use drugs and 45 people who formerly used drugs. Results: High levels of trust, acquired through the establishment of dense social networks, are required to initiate recovery. However, these ‘strong bonds’ may also lead to the emergence of what is perceived by others as an exclusive social network that limits membership to those who qualify and abide by the ‘rules’ of the recovery community, particularly around continuous abstinence. Conclusions: Depending on the nature of the networks and the types of links participants have into them being socially connected can both inhibit and encourage recovery. Therefore, the successful application of social capital within the drugs and alcohol field requires a consideration of not only the presence or absence of social connections but their nature, the value they produce, and the social contexts within which they are developed

    Plasmonic sensing in crude biofluids with microhole arrays

    No full text
    présenté par Jean-François MassonInternational audienc

    Plasmonic sensing in crude biofluids with microhole arrays

    No full text
    présenté par Jean-François MassonInternational audienc

    Assessing the location of surface plasmons over nanotriangle and nanohole arrays of different size and periodicity

    No full text
    The increasing popularity of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) sensor design based on nanotriangle or nanohole arrays, and the possibility to manufacture substrates at the transition between these plasmonic substrates, makes them ideal candidates for the establishment of structure property relationships. This work features near diffraction-limited Raman images and finite-difference time-domain (FDTD) simulations of nanotriangle and nanohole array substrates, which clearly demonstrate that the localization of the hot spot on these SERS substrates is significantly influenced by the ratio of diameter/periodicity (D/P). The experimental and simulation data reveal that the hot spots are located around nanotriangles (D/P = 1), characteristic of localized SPR. Decreasing the D/P ratio to 0.75-0.7 led to the creation of nanohole arrays, which promoted the excitation of a propagating surface plasmon (SP) delocalized over the metal network. The optimal SERS intensity was consistently achieved at this transition from nanotriangles to nanoholes, for every periodicity (650 nm to 1.5 mu m) and excitation wavelength (633 and 785 nm) investigated, despite the presence or absence of a plasmonic band near the laser excitation. Further decreasing the D/P ratio led to excitation of a localized SP located around the rim of nanohole arrays for D/P of 0.5-0.6, in agreement with previous reports. In addition, this manuscript provides the first evidence that the hot spots are positioned inside the hole for D/P of 0.4, with the center being the region of highest electric field and Raman intensity. The compelling experimental evidence and FDTD simulations offer an overall understanding of the plasmonic properties of nanohole arrays as SERS and SPR sensors, which is of significant value in advancing the diversity of applications from such surfaces

    Effect of cavity architecture on the surface enhanced emission from site selective nanostructured cavity arrays

    Get PDF
    Presented here are studies of the impact of incident angle on surface-enhanced emission from a dye that is located site selectively on a plasmon-active nanocavity array support. Studies were performed for a surface-active luminescent dye selectively assembled on the top surface or on the walls of the voids of nanocavity array substrates. Results show that emission intensities depend on where the dye is located with respect to the void or surface of the nanocavity array and on the dimensions of the cavity. This was interpreted to arise from the presence of void-localized plasmons and surface-localized and -delocalized plasmon modes.Science Foundation IrelandHigher Education AuthorityAuthor has checked copyright070813 R
    corecore