8,655 research outputs found

    Precision Measurement of sin^2 theta_W at a Reactor

    Full text link
    This paper presents a strategy for measuring sin^2 theta_W to ~1% at a reactor-based experiment, using antineutrinos electron elastic scattering. This error is comparable to the NuTeV, SLAC E158, and APV results on sin^2 theta_W, but with substantially different contributions to the systematics. An improved method for identifying antineutrino proton events, which serve both as a background and as a normalization sample, is described. The measurement can be performed using the near detector of the presently proposed reactor-based oscillation experiments. We conclude that an absolute error of delta(sin^2 theta_W)=0.0019 may be achieved.Comment: To be Submitted to Phys. Rev.

    Using Reactors to Measure θ13\theta_{13}

    Full text link
    A next-generation neutrino oscillation experiment using reactor neutrinos could give important information on the size of mixing angle θ13\theta_{13}. The motivation and goals for a new reactor measurement are discussed in the context of other measurements using off-axis accelerator neutrino beams. The reactor measurements give a clean measure of the mixing angle without ambiguities associated with the size of the other mixing angles, matter effects, and effects due to CP violation. The key question is whether a next-generation experiment can reach the needed sensitivity goals to make a measurement for sin22θ13\sin^{2}2\theta_{13} at the 0.01 level. The limiting factors associated with a reactor disappearance measurement are described with some ideas of how sensitivities can be improved. Examples of possible experimental setups are presented and compared with respect to cost and sensitivity

    Effect of oxytocin on free intracellular Ca2+ levels and progesterone release by human granulosa-lutein cells

    Get PDF
    Oxytocin and its receptor are found in the corpus luteum in a variety of species, including the human. In the present study we used fura-2 microfluorimetry to investigate whether activation of the oxytocin receptor of cultured human granulosa-lutein cells causes intracellular calcium (Ca2+) signals and affects progesterone release. Although after 1 day in culture, cells were not responsive to oxytocin, the number of responsive cells increased steadily during the first 3 days in culture, reaching a maximum on days 4 and 5 (59-66%) and then declined again until day 8. Effective oxytocin concentrations were apparently independent of the culture day, and concentrations as low as 10 nmol/L increased intracellular free Ca2+ levels from 70-140 nmol/L (basal levels) to maximal peak levels of 800 nmol/L. The oxytocin-induced Ca2+ signal was not affected by removal of extracellular Ca2+ with EGTA. Moreover, depletion of intracellular Ca2+ stores by ionomycin treatment rendered the cells unresponsive to oxytocin, pointing also at the intracellular source of the oxytocin-inducible Ca2+ signal. Interestingly, after one single stimulation with oxytocin, cells became refractory to additional stimuli, and only extremely high concentrations of oxytocin induced a second increase in intracellular free Ca2+. To examine the possible effects of oxytocin on progesterone release by cultured cells, we incubated cells on culture day 2 (20% responsive cells in the fura measurements) and culture day 5 (66% responsive cells in the fura measurements) for 24 h with oxytocin (10 nmol/L) and hCG (10,000 IU/L). Although hCG significantly stimulated progesterone release, oxytocin alone was without a stimulatory effect on either day. However, a significant augmentation of the effect of hCG on progesterone release was found in incubations of cells on day 5. Interestingly, the effects of hCG also included stimulation of oxytocin release by cultured granulosa-lutein cells into the culture medium, as determined by RIA. In summary, our data indicate the presence of a functional oxytocin receptor on human granulosa-lutein cells that is linked to Ca2+ as a second messenger released from intracellular Ca2+ stores. The number of oxytocin-responsive cells increases during differentiation in culture. Moreover, oxytocin release induced by hCG and a stimulatory effect of oxytocin on the hCG-induced progesterone production during the period of maximal responsiveness of cultured cells were found. We, therefore, propose that oxytocin may have autocrine and/or paracrine functions in human granulosa-lutein cells, including fine-tuning of progesterone release

    The Two-Dimensional Square-Lattice S=1/2 Antiferromagnet Cu(pz)2_2(ClO4_4)2_2

    Full text link
    We present an experimental study of the two-dimensional S=1/2 square-lattice antiferromagnet Cu(pz)2_2(ClO4_4)2_2 (pz denotes pyrazine - C4H4N2C_4H_4N_2) using specific heat measurements, neutron diffraction and cold-neutron spectroscopy. The magnetic field dependence of the magnetic ordering temperature was determined from specific heat measurements for fields perpendicular and parallel to the square-lattice planes, showing identical field-temperature phase diagrams. This suggest that spin anisotropies in Cu(pz)2_2(ClO4_4)2_2 are small. The ordered antiferromagnetic structure is a collinear arrangement with the magnetic moments along either the crystallographic b- or c-axis. The estimated ordered magnetic moment at zero field is m_0=0.47(5)mu_B and thus much smaller than the available single-ion magnetic moment. This is evidence for strong quantum fluctuations in the ordered magnetic phase of Cu(pz)2_2(ClO4_4)2_2. Magnetic fields applied perpendicular to the square-lattice planes lead to an increase of the antiferromagnetically ordered moment to m_0=0.93(5)mu_B at mu_0H=13.5T - evidence that magnetic fields quench quantum fluctuations. Neutron spectroscopy reveals the presence of a gapped spin excitations at the antiferromagnetic zone center, and it can be explained with a slightly anisotropic nearest neighbor exchange coupling described by J_1^{xy}=1.563(13)meV and J_1^z=0.9979(2)J_1^{xy}

    Intercalation of graphene on SiC(0001) via ion-implantation

    Full text link
    Electronic devices based on graphene technology are catching on rapidly and the ability to engineer graphene properties at the nanoscale is becoming, more than ever, indispensable. Here, we present a new procedure of graphene functionalization on SiC(0001) that paves the way towards the fabrication of complex graphene electronic chips. The procedure resides on the well-known ion-implantation technique. The efficiency of the working principle is demonstrated by the intercalation of the epitaxial graphene layer on SiC(0001) with Bi atoms, which was not possible following standard procedures. Our results put forward the ion-beam lithography to nanostructure and functionalize desired graphene chips

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Sensitivity of an image plate system in the XUV (60 eV < E < 900 eV)

    Full text link
    Phosphor imaging plates (IPs) have been calibrated and proven useful for quantitative x-ray imaging in the 1 to over 1000 keV energy range. In this paper we report on calibration measurements made at XUV energies in the 60 to 900 eV energy range using beamline 6.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. We measured a sensitivity of ~25 plus or minus 15 counts/pJ over the stated energy range which is compatible with the sensitivity of Si photodiodes that are used for time-resolved measurements. Our measurements at 900 eV are consistent with the measurements made by Meadowcroft et al. at ~1 keV.Comment: 7 pages, 2 figure

    Long-Distance Contributions to D^0-D^0bar Mixing Parameters

    Full text link
    Long-distance contributions to the D0D^0-Dˉ0\bar D^0 mixing parameters xx and yy are evaluated using latest data on hadronic D0D^0 decays. In particular, we take on two-body DPPD \to PP and VPVP decays to evaluate the contributions of two-body intermediate states because they account for 50\sim 50% of hadronic D0D^0 decays. Use of the diagrammatic approach has been made to estimate yet-observed decay modes. We find that yy is of order a few ×103\times 10^{-3} and xx of order 10310^{-3} from hadronic PPPP and VPVP modes. These are in good agreement with the latest direct measurement of D0D^0-Dˉ0\bar D^0 mixing parameters using the D0KSπ+πD^0 \to K_S \pi^+\pi^- and KSK+KK_S K^+ K^- decays by BaBar. We estimate the contribution to yy from the VVVV modes using the factorization model and comment on the single-particle resonance effects and contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in Phys. Rev.

    QCD sum rules for the anti-charmed pentaquark

    Full text link
    We present a QCD sum rule analysis for the anti-charmed pentaquark state with and without strangeness. While the sum rules for most of the currents are either non-convergent or dominated by the DNDN continuum, the one for the non-strange pentaquark current composed of two diquarks and an antiquark, is convergent and has a structure consistent with a positive parity pentaquark state after subtracting out the DNDN continuum contribution. Arguments are presented on the similarity between the result of the present analysis and that based on the constituent quark models, which predict a more stable pentaquark states when the antiquark is heavy.Comment: 19 pages, 8 figures, REVTex, revised version,new figures added and references update
    corecore