45 research outputs found

    Probing the Shock Breakout Signal of SN 2024ggi from the Transformation of Early Flash Spectroscopy

    Get PDF
    © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present early-time, hour-to-day cadence spectroscopy of the nearby Type II supernova (SN II) 2024ggi, which was discovered at a phase when the SN shock had just emerged from the red supergiant (RSG) progenitor star. Over the first few days after the first light, SN 2024ggi exhibited prominent narrow emission lines formed through intense and persistent photoionization of the nearby circumstellar material (CSM). In the first 63 hr, spectral lines of He, C, N, and O revealed a rapid rise in ionization as a result of the progressive sweeping up of the CSM by the shock. The duration of the IIn-like spectra indicates a dense and relatively confined CSM distribution extending up to ∼4 × 1014 cm. Spectral modeling reveals that a CSM mass-loss rate at this region exceeding 5 × 10−3 M ⊙ yr−1 is required to reproduce low-ionization emissions, which dramatically exceeds that of an RSG. Analyzing the Hα emission shift implies the velocity of the unshocked outer CSM to be between 20 and 40 km s−1, matching the typical wind velocity of an RSG. The differences between the inner and outer layers of the CSM and an RSG progenitor highlight a complex mass-loss history before the explosion of SN 2024ggi.Peer reviewe

    Frequency Distribution Model of Wind Speed Based on the Exponential Polynomial for Wind Farms

    No full text
    This study introduces and analyses existing models of wind speed frequency distribution in wind farms, such as the Weibull distribution model, the Rayleigh distribution model, and the lognormal distribution model. Inspired by the shortcomings of these models, we propose a distribution model based on an exponential polynomial, which can describe the actual wind speed frequency distribution. The fitting error of other common distribution models is too large at zero or low wind speeds. The proposed model can solve this problem. The exponential polynomial distribution model can fit multimodal distribution wind speed data as well as unimodal distribution wind speed data. We used the linear-least-squares method to acquire the parameters for the distribution model. Finally, we carried out contrast simulation experiments to validate the effectiveness and advantages of the proposed distribution model

    A Second-Order Crank–Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction

    No full text
    In this paper, we construct a fully discrete and decoupled Crank–Nicolson Leap-Frog (CNLF) scheme for solving the modified phase field crystal model (MPFC) with long-range interaction. The idea of CNLF is to treat stiff terms implicity with Crank–Nicolson and to treat non-stiff terms explicitly with Leap-Frog. In addition, the scalar auxiliary variable (SAV) method is used to allow explicit treatment of the nonlinear potential, then, these technique combines with CNLF can lead to the highly efficient, fully decoupled and linear numerical scheme with constant coefficients at each time step. Furthermore, the Fourier spectral method is used for the spatial discretization. Finally, we show that the CNLF scheme is fully discrete, second-order decoupled and unconditionally stable. Ample numerical experiments in 2D and 3D are provided to demonstrate the accuracy, efficiency, and stability of the proposed method

    A New Modeling Approach for the Probability Density Distribution Function of Wind power Fluctuation

    No full text
    With the rapid development of grid-connected wind power, analysing and describing the probability density distribution characteristics of wind power fluctuation has always been a hot and difficult problem in the wind power field. In traditional methods, a single distribution function model is used to fit the probability density distribution of wind power output fluctuation; however, the results are unsatisfying. Therefore, a new distribution function model is proposed in this work for fitting the probability density distribution to replace a single distribution function model. In form, the new model includes only four parameters which make it easier to implement. Four statistical index models are used to evaluate the distribution function fits with the measured probability data. Simulations are designed to compare the new model with the Gaussian mixture model, and results illustrate the effectiveness and advantages of the newly developed model in fitting the wind power fluctuation probability density distribution. Besides, the fireworks algorithm is adopted for determining the optimal parameters in the distribution function model. The comparison experiments of the fireworks algorithm with the particle swarm optimization (PSO) algorithm and the genetic algorithm (GA) are carried out, which shows that the fireworks algorithm has faster convergence speed and higher accuracy than the two common intelligent algorithms, so it is useful for optimizing parameters in power systems

    Mutation breeding of lipase-producing strain Flavobacterium sp. by supercritical CO2 with hydrazine hydrate

    No full text
    This work aimed to obtain an ideal mutant strain with higher lipase yield using hydrazine hydrate (HZH) as a novel additive to treat Flavobacterium sp. strain YY25 by supercritical CO2. The survival rate and the positive mutation rate of the tested strain were strongly dependent on the dose of HZH. The treatment by 0.5% HZH in supercritical CO2 (8 MPa, 35°C) for 30 min provided 58.3% of positive mutation rate and an expected mutant strain with about 76.7% increase in lipase yield compared with the wild strain. Possible mutagenesis mechanisms were further explored. The analysis on pH drop of the treated seed liquid was performed to better understand the interaction. Results proved that the induced mutation with enhanced yield of lipase could be achieved by co-mutagenesis of supercritical CO2 and HZH

    Shape control on probability density function in stochastic systems

    No full text

    Novel Detection Scheme Design Considering Cyber Attacks on Load Frequency Control

    No full text

    Operation characteristics of DC transmission system with large-scale renewable energy integration

    No full text
    Marked with flexible interconnection and control, the high-voltage direct current (HVDC) gird has captured much attention of industries and academics. Hybrid dual-infeed or multi-infeed HVDC composed of line-commutated-converter HVDC (LCC-HVDC) and voltage source converter HVDC (VSC-HVDC) will form the main pattern in a further power grid; meanwhile, the new gird pattern will bring new opportunities and challenges to security and stability control in the power system. First, research works on the control strategies and operation performances of LCC-HVDC and VSC-HVDC are stated in this paper; then, a model of wind power integration into a dual-infeed DC transmission system is established in PowerFactory, and case studies are conducted in both steady and transient states. On this basis, a new control strategy for variable-speed constant-frequency wind power generators to promote voltage characteristics of the DC network is designed in this paper, and two additional active power control segments are designed in the traditional control system; thus, DC voltage stability can be improved by fast regulation of active power output due to quick power adjustment of wind power generators; simulations are implemented and the results will lay a foundation for safe and stable operation in the DC transmission system with renewable energy integration
    corecore