69,540 research outputs found
A Probabilistic Embedding Clustering Method for Urban Structure Detection
Urban structure detection is a basic task in urban geography. Clustering is a
core technology to detect the patterns of urban spatial structure, urban
functional region, and so on. In big data era, diverse urban sensing datasets
recording information like human behaviour and human social activity, suffer
from complexity in high dimension and high noise. And unfortunately, the
state-of-the-art clustering methods does not handle the problem with high
dimension and high noise issues concurrently. In this paper, a probabilistic
embedding clustering method is proposed. Firstly, we come up with a
Probabilistic Embedding Model (PEM) to find latent features from high
dimensional urban sensing data by learning via probabilistic model. By latent
features, we could catch essential features hidden in high dimensional data
known as patterns; with the probabilistic model, we can also reduce uncertainty
caused by high noise. Secondly, through tuning the parameters, our model could
discover two kinds of urban structure, the homophily and structural
equivalence, which means communities with intensive interaction or in the same
roles in urban structure. We evaluated the performance of our model by
conducting experiments on real-world data and experiments with real data in
Shanghai (China) proved that our method could discover two kinds of urban
structure, the homophily and structural equivalence, which means clustering
community with intensive interaction or under the same roles in urban space.Comment: 6 pages, 7 figures, ICSDM201
Formation of Ti–Zr–Cu–Ni bulk metallic glasses
Formation of bulk metallic glass in quaternary Ti–Zr–Cu–Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti34Zr11Cu47Ni8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti34Zr11Cu47Ni8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation
Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens
An arbitrary surface mass density of gravitational lens can be decomposed
into multipole components. We simulate the ray-tracing for the multipolar mass
distribution of generalized SIS (Singular Isothermal Sphere) model, based on
the deflection angles which are analytically calculated. The magnification
patterns in the source plane are then derived from inverse shooting technique.
As have been found, the caustics of odd mode lenses are composed of two
overlapping layers for some lens models. When a point source traverses such
kind of overlapping caustics, the image numbers change by \pm 4, rather than
\pm 2. There are two kinds of images for the caustics. One is the critical
curve and the other is the transition locus. It is found that the image number
of the fold is exactly the average value of image numbers on two sides of the
fold, while the image number of the cusp is equal to the smaller one. We also
focus on the magnification patterns of the quadrupole (m = 2) lenses under the
perturbations of m = 3, 4 and 5 mode components, and found that one, two, and
three butterfly or swallowtail singularities can be produced respectively. With
the increasing intensity of the high-order perturbations, the singularities
grow up to bring sixfold image regions. If these perturbations are large enough
to let two or three of the butterflies or swallowtails contact, eightfold or
tenfold image regions can be produced as well. The possible astronomical
applications are discussed.Comment: 24 pages, 6 figure
Possible Exotic State
We study the possible exotic states with using the
tetraquark interpolating currents with the QCD sum rule approach. The extracted
masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the
bottomomium-like states. There is no working region for the light tetraquark
currents, which implies the light state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table
Tracking intracavernously injected adipose-derived stem cells to bone marrow.
The intracavernous (i.c.) injection of stem cells (SCs) has been shown to improve erectile function in various erectile dysfunction (ED) animal models. However, the tissue distribution of the injected cells remains unknown. In this study we tracked i.c.-injected adipose-derived stem cells (ADSCs) in various tissues. Rat paratesticular fat was processed for ADSC isolation and culture. The animals were then subject to cavernous nerve (CN) crush injury or sham operation, followed by i.c. injection of 1 million autologous or allogeneic ADSCs that were labeled with 5-ethynyl-2-deoxyuridine (EdU). Another group of rats received i.c. injection of EdU-labeled allogeneic penile smooth muscle cells (PSMCs). At 2 and 7 days post injection, penises and femoral bone marrow were processed for histological analyses. Whole femoral bone marrows were also analyzed for EdU-positive cells by flow cytometry. The results show that ADSCs exited the penis within days of i.c. injection and migrated preferentially to bone marrow. Allogenicity did not affect the bone marrow appearance of ADSCs at either 2 or 7 days, whereas CN injury reduced the number of ADSCs in bone marrow significantly at 7 but not 2 days. The significance of these results in relation to SC therapy for ED is discussed
Magnification relations of quad lenses and applications on Einstein crosses
In this work, we mainly study the magnification relations of quad lens models
for cusp, fold and cross configurations. By dividing and ray-tracing in
different image regions, we numerically derive the positions and magnifications
of the four images for a point source lying inside of the astroid caustic.
Then, based on the magnifications, we calculate the signed cusp and fold
relations for the singular isothermal elliptical lenses. The signed fold
relation map has positive and negative regions, and the positive region is
usually larger than the negative region as has been confirmed before. It can
also explain that for many observed fold image pairs, the fluxes of the Fermat
minimum images are apt to be larger than those of the saddle images. We define
a new quantity cross relation which describes the magnification discrepancy
between two minimum images and two saddle images. Distance ratio is also
defined as the ratio of the distance of two saddle images to that of two
minimum images. We calculate the cross relations and distance ratios for nine
observed Einstein crosses. In theory, for most of the quad lens models, the
cross relations decrease as the distance ratios increase. In observation, the
cross relations of the nine samples do not agree with the quad lens models very
well, nevertheless, the cross relations of the nine samples do not give obvious
evidence for anomalous flux ratio as the cusp and fold types do. Then, we
discuss several reasons for the disagreement, and expect good consistencies for
more precise observations and better lens models in the future.Comment: 12 pages, 11 figures, accepted for publication in MNRA
- …