18,630 research outputs found

    Reflection matrices for the Uq[sl(r2m)(2)]U_{q}[sl(r|2m)^{(2)}] vertex model

    Full text link
    The graded reflection equation is investigated for the Uq[sl(r2m)(2)]U_{q}[sl(r|2m)^{(2)}] vertex model. We have found four classes of diagonal solutions and twelve classes of non-diagonal ones. The number of free parameters for some solutions depends on the number of bosonic and fermionic degrees of freedom considered.Comment: 30 page

    Majority-vote model on (3,4,6,4) and (3^4,6) Archimedean lattices

    Full text link
    On Archimedean lattices, the Ising model exhibits spontaneous ordering. Two examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition is observed in this system. The calculated values of the critical noise parameter are q_c=0.091(2) and q_c=0.134(3) for (3,4,6,4) and (3^4,6) Archimedean lattices, respectively. The critical exponents beta/nu, gamma/nu and 1/nu for this model are 0.103(6), 1.596(54), 0.872(85) for (3,4,6,4) and 0.114(3), 1.632(35), 0.978(104) for (3^4,6) Archimedean lattices. These results differs from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks. The effective dimensionality of the system [D_{eff}(3,4,6,4)=1.802(55) and D_{eff}(3^4,6)=1.860(34)] for these networks are reasonably close to the embedding dimension two.Comment: 6 pages, 7 figures in 12 eps files, RevTex

    Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Full text link
    We probe the two-scale factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(NN) λϕ4\lambda\phi^{4} scalar field theories with rotation symmetry-breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure

    Majority-Vote Model on a Random Lattice

    Full text link
    The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents γ\gamma and β\beta are found to be different from those of the Ising and majority vote on the square lattice model and the critical noise parameter is found to be qc=0.117±0.005q_{c}=0.117\pm0.005.Comment: 4 pages, 6 figure

    Effects of nanoscale spatial inhomogeneity in strongly correlated systems

    Full text link
    We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential viv_i can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction UiU_i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for reexamination of model calculations assuming spatial homogeneity.Comment: 5 pages, 1 table, 4 figures, to appear in PR

    Procedimentos corretos para a prática do pesque-e-solte.

    Get PDF
    bitstream/CPAP/55903/1/ADM111.pdfDisponível também em: portalbonito, agrolink, zoonews, campogrande.news, boletimpecuario, famasul, aquidauananews, douradosagora, riosvivos, navirainews, msnoticias, perfinews, capitaldopantanal, internel, bbcnews, douradosnews, portaldoagronegocio, corumbaonline, envolverde, agrosoft, douradosinforma, sonoticias, clickpantanal, estadomsnews, bonitonoticias, agenciapantanal, criareplantar, interiornews, opantaneiro, agronline, agorams, reporterms, maracajunews, baixadanaweb, folhadoms, cassilandianews, unifolha, diarioms, infobibos, pantanaltotal, ultimhoranews, folhadedourados, corumbanet

    Accelerating Cold Dark Matter Cosmology (ΩΛ0\Omega_{\Lambda}\equiv 0)

    Full text link
    A new kind of accelerating flat model with no dark energy that is fully dominated by cold dark matter (CDM) is investigated. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. A related work involving accelerating CDM cosmology has been discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53, 4287 (1996)]. However, in order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here includes a constant term of the order of the Hubble parameter. In this case, H0H_0 does not need to be small in order to solve the age problem and the transition happens even if the matter creation is negligible during the radiation and part of the matter dominated phase. Therefore, instead of the vacuum dominance at redshifts of the order of a few, the present accelerating stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the gravitational particle creation process. As an extra bonus, in the present scenario does not exist the coincidence problem that plagues models with dominance of dark energy. The model is able to harmonize a CDM picture with the present age of the universe, the latest measurements of the Hubble parameter and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in Appendix B extende

    On Matrix Superpotential and Three-Component Normal Modes

    Full text link
    We consider the supersymmetric quantum mechanics (SUSY QM) with three- component normal modes for the Bogomol'nyi-Prasad-Sommerfield (BPS) states. An explicit form of the SUSY QM matrix superpotential is presented and the corresponding three-component bosonic zero-mode eigenfunction is investigated.Comment: 17 pages, no figure. Paper accepted for publication in Journal of Physics A: Mathematical and Theoretica
    corecore