11,016 research outputs found

    On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer

    Full text link
    A self-consistent calculation of the density of states and the spectral density function is performed in a two-dimensional spin-polarized hole system based on a multiple-scattering approximation. Using parameters corresponding to GaMnAs thin layers, a wide range of Mn concentrations and hole densities have been explored to understand the nature, localized or extended, of the spin-polarized holes at the Fermi level for several values of the average magnetization of the Mn ystem. We show that, for a certain interval of Mn and hole densities, an increase on the magnetic order of the Mn ions come together with a change of the nature of the states at the Fermi level. This fact provides a delocalization of spin-polarized extended states anti-aligned to the average Mn magnetization, and a higher spin-polarization of the hole gas. These results are consistent with the occurrence of ferromagnetism with relatively high transition temperatures observed in some thin film samples and multilayered structures of this material.Comment: 3 page

    Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures

    Full text link
    The occurrence of inhomogeneous spin-density distribution in multilayered ferromagnetic diluted magnetic semiconductor nanostructures leads to strong dependence of the spin-polarized transport properties on these systems. The spin-dependent mobility, conductivity and resistivity in (Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a function of temperature, scaled by the average magnetization of the diluted magnetic semiconductor layers. An increase of the resistivity near the transition temperature is obtained. We observed that the spin-polarized transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure

    A semiquantitative approach to the impurity-band-related transport properties of GaMnAs nanolayers

    Full text link
    We investigate the spin-polarized transport of GaMnAs nanolayers in which a ferromagnetic order exists below a certain transition temperature. Our calculation for the self-averaged resistivity takes into account the existence of an impurity band determining the extended ("metallic" transport) or localized (hopping by thermal excitation) nature of the states at and near the Fermi level. Magnetic order and resistivity are inter-related due to the influence of the spin polarization of the impurity band and the effect of the Zeeman splitting on the mobility edge. We obtain, for a given range of Mn concentration and carrier density, a "metallic" behavior in which the transport by extended carriers dominates at low temperature, and is dominated by the thermally excited localized carriers near and above the transition temperature. This gives rise to a conspicuous hump of the resistivity which has been experimentally observed and brings light onto the relationship between transport and magnetic properties of this material
    corecore