16,161 research outputs found

    Kinematic Constraints to the Transition Redshift from SNe Ia Union Data

    Full text link
    The kinematic approach to cosmological tests provides a direct evidence to the present accelerating stage of the universe which does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q0+q1zq(z)=q_0+q_1z, where q0q_0 and q1q_1 are arbitrary constants to be constrained by the Union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q0,q1q_0,q_1) = (0.73,1.5)-0.73,1.5) whereas the transition redshift is zt=0.490.07+0.14z_t = 0.49^{+0.14}_{-0.07} (1σ1\sigma) 0.12+0.54^{+0.54}_{-0.12} (2σ2\sigma). This kinematic result is in agreement with some independent analyzes and accommodates more easily many dynamical flat models (like Λ\LambdaCDM).Comment: 10 pages, 4 figures, 1 tabl

    Counterrotation in magnetocentrifugally driven jets and other winds

    Full text link
    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.Comment: To appear in ApJ

    Counter-rotation in relativistic magnetohydrodynamic jets

    Full text link
    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.Comment: Accepted for publication in ApJ

    Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios

    Full text link
    The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy as well, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model, and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.Comment: 15 pages, 2 figure

    Brane World Dynamics and Adiabatic Matter creation

    Full text link
    We have treated the adiabatic matter creation process in various three-brane models by applying thermodynamics of open systems. The matter creation rate is found to affect the evolution of scale factor and energy density of the universe. We find modification at early stages of cosmic dynamics. In GB and RS brane worlds, by chosing appropriate parameters we obtain standard scenario, while the warped DGP model has different Friedmann equations. During later stages, since the matter creation is negligible the evolution reduces to FRW expansion, in RS and GB models.Comment: Replaced with TEX file,No figures, Corrected References and typos. Accepted in IJMP
    corecore