29,559 research outputs found

    A Representation of the Virasoro Algebra via Wigner-Heisenberg Algebraic Technique to Bosonic Systems

    Full text link
    Using the Wigner-Heisenberg algebra for bosonic systems in connection with oscillators we find a new representation for the Virasoro algebra.Comment: Revised version. Revtex, 7 pages, no figures. This work was presented in the XXII Brazilian National Meeting on Particles and Fields (October/2001), to appear in Braz. J. of Phys., 33, 1 (2003

    Non BPS topological defect associated with two coupled real field

    Full text link
    We investigate a stability equation involving two-component eigenfunctions which is associated with a potential model in terms of two coupled real scalar fields, which presents non BPS topological defect.Comment: Revtex, 6 pages, no figures. This work was presented in the XXII Brazilian National Meeting on Particles and Fields (October/2001), to appear at http://www.sbf.if.usp.b

    Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe

    Full text link
    Several independent cosmological tests have shown evidences that the energy density of the Universe is dominated by a dark energy component, which cause the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press-Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (Power Law) mass function (where we apply a nonextensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω=0.58\omega=-0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω\omega parameter is very sensible to modifications in the PL free parameter, qq, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the International Journal of Modern Physics D (IJMPD)

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    q-Deformed Kink Solutions

    Full text link
    The q-deformed kink of the λϕ4\lambda\phi^4-model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. From such a bosonic zero-mode the q-deformed potential in 1+1 dimensions is found, and we show that the q-deformed kink solution is a kink displaced away from the origin.Comment: REvtex, 11 pages, 2 figures. Preprint CBPF-NF-005/03, site at http://www.cbpf.br. Revised version to appear in International Journal of Modern Physics

    Cosmic voids in modified gravity scenarios

    Full text link
    Modified gravity (MG) theories aim to reproduce the observed acceleration of the Universe by reducing the dark sector while simultaneously recovering General Relativity (GR) within dense environments. Void studies appear to be a suitable scenario to search for imprints of alternative gravity models on cosmological scales. Voids cover an interesting range of density scales where screening mechanisms fade out, which reaches from a density contrast δ1\delta \approx -1 close to their centers to δ0\delta \approx 0 close to their boundaries. We present an analysis of the level of distinction between GR and two modified gravity theories, the Hu-Sawicki f(R)f(R) and the symmetron theory. This study relies on the abundance, linear bias, and density profile of voids detected in n-body cosmological simulations. We define voids as connected regions made up of the union of spheres with a {\it \textup{mean}} density given by ρv=0.2ρm\overline\rho_v=0.2\,\overline\rho_m, but disconnected from any other voids. We find that the height of void walls is considerably affected by the gravitational theory, such that it increases for stronger gravity modifications. Finally, we show that at the level of dark matter n-body simulations, our constraints allow us to distinguish between GR and MG models with fR0>106|f_{R0}| > 10^{-6} and zSSB>1z_{SSB} > 1. Differences of best-fit values for MG parameters that are derived independently from multiple void probes may indicate an incorrect MG model. This serves as an important consistency check.Comment: 15 pages, 12 figure

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14z0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc
    corecore