27,439 research outputs found
On the equivalence of Lambda(t) and gravitationally induced particle production cosmologies
The correspondence between cosmological models powered by a decaying vacuum
energy density and gravitationally induced particle production is investigated.
Although being physically different in the physics behind them we show that
both classes of cosmologies under certain conditions can exhibit the same
dynamic and thermodynamic behavior. Our method is applied to obtain three
specific models that may be described either as Lambda(t)CDM or gravitationally
induced particle creation cosmologies. In the point of view of particle
production models, the later class of cosmologies can be interpreted as a kind
of one-component unification of the dark sector. By using current type Ia
supernovae data, recent estimates of the cosmic microwave background shift
parameter and baryon acoustic oscillations measurements we also perform a
statistical analysis to test the observational viability within the two
equivalent classes of models and we obtain the best-fit of the free parameters.
By adopting the Akaike information criterion we also determine the rank of the
models considered here. Finally, the particle production cosmologies (and the
associated decaying Lambda(t)-models) are modeled in the framework of field
theory by a phenomenological scalar field model.Comment: 9 pages, 3 figures, new comments and 8 references added. Accepted for
publication in Physics Letters
Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters
By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface
brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784
we access cosmic acceleration employing a kinematic description. Such result is
fully independent on the validity of any metric gravity theory, the possible
matter-energy contents filling the Universe, as well as on the SNe Ia Hubble
diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth
Marcel Grossmann Meeting on General Relativit
Black Hole Formation with an Interacting Vacuum Energy Density
We discuss the gravitational collapse of a spherically symmetric massive core
of a star in which the fluid component is interacting with a growing vacuum
energy density. The influence of the variable vacuum in the collapsing core is
quantified by a phenomenological \beta-parameter as predicted by dimensional
arguments and the renormalization group approach. For all reasonable values of
this free parameter, we find that the vacuum energy density increases the
collapsing time but it cannot prevent the formation of a singular point.
However, the nature of the singularity depends on the values of \beta. In the
radiation case, a trapped surface is formed for \beta<1/2 whereas for
\beta>1/2, a naked singularity is developed. In general, the critical value is
\beta=1-2/3(1+\omega), where the \omega-parameter describes the equation of
state of the fluid component.Comment: 9 pages, 8 figure
Are Galaxy Clusters Suggesting an Accelerating Universe?
The present cosmic accelerating stage is discussed through a new kinematic
method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface
brightness data from galaxy clusters. By using the SZE/X-ray data from 38
galaxy clusters in the redshift range [Bonamente et
al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is
accelerating and that the transition from an earlier decelerating to a late
time accelerating regime is relatively recent. The ability of the ongoing
Planck satellite mission to obtain tighter constraints on the expansion history
through SZE/X-ray angular diameters is also discussed. Our results are fully
independent on the validity of any metric gravity theory, the possible matter-
energy contents filling the Universe, as well as on the SNe Ia Hubble diagram
from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings
of the Conferenc
Clustering, Angular Size and Dark Energy
The influence of dark matter inhomogeneities on the angular size-redshift
test is investigated for a large class of flat cosmological models driven by
dark energy plus a cold dark matter component (XCDM model). The results are
presented in two steps. First, the mass inhomogeneities are modeled by a
generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is
characterized by a smoothness parameter and a power index ,
and, second, we provide a statistical analysis to angular size data for a large
sample of milliarcsecond compact radio sources. As a general result, we have
found that the parameter is totally unconstrained by this sample of
angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review
- …