2 research outputs found

    Spatial and Temporal Variation of Real Integrated Land Productivity of Yunnan Province

    No full text
    Taking Yunnan Province as an example, this paper calculated the real integrated land productivity (RILP) of 16 prefectures (cities) in Yunnan Province for the past 11 years (2009-2019), and analyzed its spatial distribution pattern. The research results show that the RILP of the whole Yunnan Province and all prefectures (cities) showed a slow upward trend. Among them, the province’s RILP showed the highest increase in 2019 compared with the previous year; the RILP of all prefectures (cities) in Yunnan Province has significant spatial autocorrelation, showing obvious positive spatial agglomeration characteristics. Based on this, this paper proposes to improve the overall RILP in various regions according to local conditions and formulate countermeasures for coordinated development of various prefectures (cities)

    Preparation and Photocatalytic Properties of a Bagasse Cellulose-Supported Nano-TiO2 Photocatalytic-Coupled Microbial Carrier

    No full text
    Intimate coupling of photocatalysis and biodegradation (ICPB) has shown promise in removing unwanted organic compounds from water. In this study, bagasse cellulose titanium dioxide composite carrier (SBC-TiO2) was prepared by low-temperature foaming methods. The optimum preparation conditions, material characterization and photocatalytic performance of the composite carrier were then explored. By conducting a single factor test, we found that bagasse cellulose with a mass fraction of 4%, a polyvinyl alcohol solution (PVA) with a mass fraction of 5% and 20 g of a pore-forming agent were optimum conditions for the composite carrier. Under these conditions, good wet density, porosity, water absorption and retention could be realized. Scanning electron microscopy (SEM) results showed that the composite carrier exhibited good biologic adhesion. X-ray spectroscopy (EDS) results confirmed the successful incorporation of nano-TiO2 dioxide into the composite carrier. When the mass concentration of methylene blue (MB) was 10 mg L−1 at 200 mL, 2 g of the composite carrier was added and the initial pH value of the reaction was maintained at 6, the catalytic effect was best under these conditions and the degradation rate reached 78.91% after 6 h. The method of preparing the composite carrier can aid in the degradation of hard-to-degrade organic compounds via ICPB. These results provide a solid platform for technical research and development in the field of wastewater treatment
    corecore