40 research outputs found

    Inter-annual variation in CH4 efflux and the associated processes with reference to delta-13C-, delta-D-CH4 at the Lowland of Indigirka River in Northeastern Siberia

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    CO_2 Annual and Semiannual Cycles From Multiple Satellite Retrievals and Models

    Get PDF
    Satellite CO_2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) and in situ measurements from the National Oceanic and Atmospheric Administration - Earth System Research Laboratory (NOAA-ESRL) Surface CO_2 and Total Carbon Column Observing Network (TCCON) are utilized to explore the CO_2 variability at different altitudes. A multiple regression method is used to calculate the CO_2 annual cycle and semiannual cycle amplitudes from different data sets. The CO_2 annual cycle and semiannual cycle amplitudes for GOSAT X_(CO2) and TCCON X_(CO2) are consistent but smaller than those seen in the NOAA-ESRL surface data. The CO_2 annual and semiannual cycles are smallest in the AIRS midtropospheric CO_2 compared with other data sets in the Northern Hemisphere. The amplitudes for the CO_2 annual cycle and semiannual cycle from GOSAT, TES, and AIRS CO_2 are small and comparable to each other in the Southern Hemisphere. Similar regression analysis is applied to the Model for OZone And Related chemical Tracers-2 and CarbonTracker model CO_2. The convolved model CO_2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO_2 retrievals, although the models tend to underestimate the CO_2 seasonal cycle amplitudes in the Northern Hemisphere midlatitudes and underestimate the CO_2 semiannual cycle amplitudes in the high latitudes. These results can be used to better understand the vertical structures for the CO_2 annual cycle and semiannual cycle and help identify deficiencies in the models, which are very important for the carbon budget study

    CO_2 semiannual oscillation in the middle troposphere and at the surface

    Get PDF
    Using in situ measurements, we find a semiannual oscillation (SAO) in the midtropospheric and surface CO_2. Chemistry transport models (2-D Caltech/JPL model, 3-D GEOS-Chem, and 3-D MOZART-2) are used to investigate possible sources for the SAO signal in the midtropospheric and surface CO_2. From model sensitivity studies, it is revealed that the SAO signal in the midtropospheric CO_2 originates mainly from surface CO_2 with a small contribution from transport fields. It is also found that the source for the SAO signal in surface CO_2 is mostly related to the CO_2 exchange between the biosphere and the atmosphere. By comparing model CO_2 with in situ CO_2 measurements at the surface, we find that models are able to capture both annual and semiannual cycles well at the surface. Model simulations of the annual and semiannual cycles of CO_2 in the tropical middle troposphere agree reasonably well with aircraft measurements

    Influence of El Niño on Midtropospheric CO_2 from Atmospheric Infrared Sounder and Model

    Get PDF
    The authors investigate the influence of El Niño on midtropospheric CO_2 from the Atmospheric Infrared Sounder (AIRS) and the Model for Ozone and Related Chemical Tracers, version 2 (MOZART-2). AIRS midtropospheric CO_2 data are used to study the temporal and spatial variability of CO_2 in response to El Niño. CO_2 differences between the central and western Pacific Ocean correlate well with the Southern Oscillation index. To reveal the temporal and spatial variability of the El Niño signal in the AIRS midtropospheric CO_2, a multiple regression method is applied to the CO_2 data from September 2002 to February 2011. There is more (less) midtropospheric CO_2 in the central Pacific and less (more) midtropospheric CO_2 in the western Pacific during El Niño (La Niña) events. Similar results are seen in the MOZART-2 convolved midtropospheric CO_2, although the El Niño signal in the MOZART-2 is weaker than that in the AIRS data

    A spatio-temporal pattern of past tree response to climate changes deduced from tree-ring width, delta-13C and a DGVM over the pan-Arctic ecosystems

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議

    Study on the Distribution and Community Characteristics of the Endangered Plant Picea neoveitchii Mast. in Hubei Province

    No full text
    In this paper, the geographical distribution, community characteristics and DBH class structure of Picea neoveitchii Mast. population were investigated and analyzed by systematical and ecological approaches. In addition, the endangered mechanism and the protection measures were put forward by analyzing the Picea neoveitchii Mast. resource distribution in Hubei Province to provide effective scientific basis for further research. The results showed that Picea neoveitchii Mast. was found in Baokang, Enshi, Shennongjia and Zhuxi of Hubei Province, there were 9 distribution points and only a wild forest was found in Baokang. The community of Baokang County was not rich in species composition and 32 species, 29 genera and 21 families were examined. Meanwhile, temperate zone was the main flora element of this community, the phaenerophytes plant was most dominant and there were few hemicryptophytes and it lacked therophytes. In this community, Picea neoveitchii Mast. was in a dominant position, including lots of treelets, so the age structure of the population was growing
    corecore