274 research outputs found

    Downlink Channel Covariance Matrix Reconstruction for FDD Massive MIMO Systems with Limited Feedback

    Full text link
    The downlink channel covariance matrix (CCM) acquisition is the key step for the practical performance of massive multiple-input and multiple-output (MIMO) systems, including beamforming, channel tracking, and user scheduling. However, this task is challenging in the popular frequency division duplex massive MIMO systems with Type I codebook due to the limited channel information feedback. In this paper, we propose a novel formulation that leverages the structure of the codebook and feedback values for an accurate estimation of the downlink CCM. Then, we design a cutting plane algorithm to consecutively shrink the feasible set containing the downlink CCM, enabled by the careful design of pilot weighting matrices. Theoretical analysis shows that as the number of communication rounds increases, the proposed cutting plane algorithm can recover the ground-truth CCM. Numerical results are presented to demonstrate the superior performance of the proposed algorithm over the existing benchmark in CCM reconstruction

    6G Non-Terrestrial Networks Enabled Low-Altitude Economy: Opportunities and Challenges

    Full text link
    The unprecedented development of non-terrestrial networks (NTN) utilizes the low-altitude airspace for commercial and social flying activities. The integration of NTN and terres- trial networks leads to the emergence of low-altitude economy (LAE). A series of LAE application scenarios are enabled by the sensing, communication, and transportation functionalities of the aircrafts. The prerequisite technologies supporting LAE are introduced in this paper, including the network coverage and aircrafts detection. The LAE functionalities assisted by aircrafts with respect to sensing and communication are then summarized, including the terrestrial and non-terrestrial targets sensing, ubiquitous coverage, relaying, and traffic offloading. Finally, several future directions are identified, including aircrafts collaboration, energy efficiency, and artificial intelligence enabled LAE.Comment: This paper has been submitted to IEEE for possible publicatio

    Stochastic switching of TiO2 based memristive devices with identical initial memory states

    Get PDF
    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution

    Glymphatic transport is reduced in rats with spontaneous pituitary tumor

    Get PDF
    BACKGROUND AND OBJECTIVE: Pituitary tumor in patients induces adverse alterations in the brain, accompanied by cognitive deficits. Dysfunction of glymphatic waste clearance results in accumulation of neurotoxic products within the brain, leading to cognitive impairment. However, the status of glymphatic function in the brain with pituitary tumor is unknown. Using magnetic resonance imaging (MRI) and an advanced mathematical modeling, we investigated the changes of glymphatic transport in the rats carrying spontaneous pituitary tumor. METHODS: Rats (22-24 months, female, Wistar) with and without pituitary tumor (n = 7/per group) underwent the identical experimental protocol. MRI measurements, including T2-weighted imaging and dynamic 3D T1-weighted imaging with intracisternal administration of contrast agent, were performed on each animal. The contrast-induced enhancement in the circle of Willis and in the glymphatic influx nodes were observed on the dynamic images and verified with time-signal-curves (TSCs). Model-derived parameters of infusion rate and clearance rate that characterize the kinetics of glymphatic tracer transport were evaluated in multiple representative brain regions. RESULTS: Our imaging data demonstrated a higher incidence of partially enhanced circle of Willis (86 vs. 14%; p \u3c 0.033) and a lower incidence of enhancement in glymphatic influx nodes of pituitary (71 vs. 100%) and pineal (57 vs. 86%) recesses in the rats with pituitary tumor than in the rats with normal appearance of pituitary gland, indicating an intensification of impaired peri-vascular pathway and impeded glymphatic transport due to the presence of pituitary tumor. Consistently, our kinetic modeling and regional cerebral tissue quantification revealed significantly lower infusion and clearance rates in all examined regions in rats with spontaneous pituitary tumor than in non-tumor rats, representing a suppressed glymphatic transport in the brain with pituitary tumor. CONCLUSION: Our study demonstrates the compromised glymphatic transport in the rat brain with spontaneous pituitary tumor. The reduced efficiency in cerebral waste clearance increases the risk for neurodegeneration in the brain that may underlie the cognitive impairment commonly seen in patients with pituitary tumors

    Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI

    Get PDF
    Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo). T2DM rats received BMSC (5x106, n = 8) or an equal volume of phosphate-buffered saline (PBS) (n = 8) via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (

    Non-intrusive load monitoring for multi-objects in smart building

    Get PDF
    The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via nonintrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks
    • …
    corecore